Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,40 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
import os
|
3 |
-
|
4 |
import pymupdf
|
5 |
-
from pptx import Presentation #
|
6 |
from sentence_transformers import SentenceTransformer # Text embeddings
|
7 |
import torch
|
8 |
from transformers import CLIPProcessor, CLIPModel # Image embeddings
|
9 |
from PIL import Image
|
10 |
import chromadb
|
11 |
-
|
|
|
12 |
|
13 |
app = FastAPI()
|
14 |
client = chromadb.PersistentClient(path="/data/chroma_db")
|
15 |
collection = client.get_or_create_collection(name="knowledge_base")
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
pdf_file="Sutures and Suturing techniques.pdf"
|
20 |
-
pptx_file="impalnt 1.pptx"
|
21 |
-
|
22 |
-
|
23 |
-
collection = client.get_collection(name="knowledge_base")
|
24 |
-
print("Collection Embedding Dimension:", collection.metadata)
|
25 |
|
26 |
# Initialize models
|
27 |
text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
|
|
28 |
|
29 |
-
# Folder for extracted images
|
30 |
IMAGE_FOLDER = "/data/extracted_images"
|
31 |
os.makedirs(IMAGE_FOLDER, exist_ok=True)
|
32 |
-
|
|
|
33 |
def extract_text_from_pdf(pdf_path):
|
34 |
-
text = ""
|
35 |
-
doc = pymupdf.open(pdf_path)
|
36 |
-
for page in doc:
|
37 |
-
text += page.get_text() + "\n"
|
38 |
return text.strip()
|
39 |
|
40 |
-
|
41 |
-
### Step 2: Extract Text from PowerPoint ###
|
42 |
def extract_text_from_pptx(pptx_path):
|
43 |
-
text
|
44 |
-
prs = Presentation(pptx_path)
|
45 |
-
for slide in prs.slides:
|
46 |
-
for shape in slide.shapes:
|
47 |
-
if hasattr(shape, "text"):
|
48 |
-
text += shape.text + "\n"
|
49 |
-
return text.strip()
|
50 |
-
|
51 |
|
52 |
-
|
53 |
def extract_images_from_pdf(pdf_path):
|
54 |
images = []
|
55 |
doc = pymupdf.open(pdf_path)
|
@@ -57,102 +42,73 @@ def extract_images_from_pdf(pdf_path):
|
|
57 |
for img_index, img in enumerate(page.get_images(full=True)):
|
58 |
xref = img[0]
|
59 |
image = doc.extract_image(xref)
|
60 |
-
|
61 |
-
img_ext = image["ext"]
|
62 |
-
img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{img_ext}"
|
63 |
with open(img_path, "wb") as f:
|
64 |
-
f.write(
|
65 |
images.append(img_path)
|
66 |
return images
|
67 |
|
68 |
-
|
69 |
-
### Step 4: Extract Images from PowerPoint ###
|
70 |
def extract_images_from_pptx(pptx_path):
|
71 |
images = []
|
72 |
prs = Presentation(pptx_path)
|
73 |
for i, slide in enumerate(prs.slides):
|
74 |
for shape in slide.shapes:
|
75 |
-
if shape.shape_type == 13:
|
76 |
-
|
77 |
-
img_bytes = image.blob
|
78 |
-
img_ext = image.ext
|
79 |
-
img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{img_ext}"
|
80 |
with open(img_path, "wb") as f:
|
81 |
-
f.write(
|
82 |
images.append(img_path)
|
83 |
return images
|
84 |
|
85 |
-
|
86 |
-
### Step 5: Convert Text to Embeddings ###
|
87 |
def get_text_embedding(text):
|
88 |
return text_model.encode(text).tolist()
|
89 |
|
90 |
-
|
91 |
-
import torch
|
92 |
-
import numpy as np
|
93 |
-
from sklearn.decomposition import PCA
|
94 |
-
|
95 |
-
# ✅ Load CLIP (512-dimensional output)
|
96 |
-
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
97 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
98 |
-
|
99 |
def get_image_embedding(image_path):
|
100 |
-
"""Extracts image embedding and reduces to 384 dimensions"""
|
101 |
-
from PIL import Image
|
102 |
-
|
103 |
image = Image.open(image_path)
|
104 |
inputs = processor(images=image, return_tensors="pt")
|
105 |
-
|
106 |
with torch.no_grad():
|
107 |
-
image_embedding = model.get_image_features(**inputs)
|
108 |
-
|
109 |
-
image_embedding = image_embedding.numpy().flatten() # Convert to NumPy (512,)
|
110 |
|
111 |
-
|
112 |
-
pca = PCA(n_components=384)
|
113 |
-
image_embedding_384 = pca.fit_transform(image_embedding.reshape(1, -1))
|
114 |
-
|
115 |
-
return image_embedding_384.flatten().tolist()
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
### Step 7: Store Data in ChromaDB ###
|
120 |
def store_data(texts, image_paths):
|
121 |
-
# Store text embeddings
|
122 |
for i, text in enumerate(texts):
|
123 |
-
|
124 |
-
print("Embedding Dimension:", len(text_embedding))
|
125 |
-
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
|
126 |
|
127 |
-
#
|
128 |
-
for
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
print("Data stored successfully!")
|
133 |
|
134 |
-
|
135 |
def process_and_store(pdf_path=None, pptx_path=None):
|
136 |
texts, images = [], []
|
137 |
-
|
138 |
if pdf_path:
|
139 |
-
print(f"Processing PDF: {pdf_path}")
|
140 |
texts.append(extract_text_from_pdf(pdf_path))
|
141 |
images.extend(extract_images_from_pdf(pdf_path))
|
142 |
-
|
143 |
if pptx_path:
|
144 |
-
print(f"Processing PPTX: {pptx_path}")
|
145 |
texts.append(extract_text_from_pptx(pptx_path))
|
146 |
images.extend(extract_images_from_pptx(pptx_path))
|
147 |
-
|
148 |
store_data(texts, images)
|
149 |
|
150 |
-
|
151 |
-
|
152 |
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
|
|
|
153 |
@app.get("/")
|
154 |
def greet_json():
|
155 |
-
|
156 |
return {"Hello": "World!"}
|
157 |
|
158 |
@app.get("/test")
|
@@ -162,11 +118,5 @@ def greet_json():
|
|
162 |
@app.get("/search/")
|
163 |
def search(query: str):
|
164 |
query_embedding = get_text_embedding(query)
|
165 |
-
results = collection.query(
|
166 |
-
query_embeddings=[query_embedding],
|
167 |
-
n_results=5
|
168 |
-
)
|
169 |
return {"results": results["documents"]}
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
1 |
from fastapi import FastAPI
|
2 |
import os
|
|
|
3 |
import pymupdf
|
4 |
+
from pptx import Presentation # PowerPoint
|
5 |
from sentence_transformers import SentenceTransformer # Text embeddings
|
6 |
import torch
|
7 |
from transformers import CLIPProcessor, CLIPModel # Image embeddings
|
8 |
from PIL import Image
|
9 |
import chromadb
|
10 |
+
import numpy as np
|
11 |
+
from sklearn.decomposition import PCA
|
12 |
|
13 |
app = FastAPI()
|
14 |
client = chromadb.PersistentClient(path="/data/chroma_db")
|
15 |
collection = client.get_or_create_collection(name="knowledge_base")
|
16 |
|
17 |
+
pdf_file = "Sutures and Suturing techniques.pdf"
|
18 |
+
pptx_file = "impalnt 1.pptx"
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Initialize models
|
21 |
text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
22 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
23 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
24 |
|
|
|
25 |
IMAGE_FOLDER = "/data/extracted_images"
|
26 |
os.makedirs(IMAGE_FOLDER, exist_ok=True)
|
27 |
+
|
28 |
+
# Extract text from PDF
|
29 |
def extract_text_from_pdf(pdf_path):
|
30 |
+
text = "".join([page.get_text() for page in pymupdf.open(pdf_path)])
|
|
|
|
|
|
|
31 |
return text.strip()
|
32 |
|
33 |
+
# Extract text from PowerPoint
|
|
|
34 |
def extract_text_from_pptx(pptx_path):
|
35 |
+
return "".join([shape.text for slide in Presentation(pptx_path).slides for shape in slide.shapes if hasattr(shape, "text")]).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Extract images from PDF
|
38 |
def extract_images_from_pdf(pdf_path):
|
39 |
images = []
|
40 |
doc = pymupdf.open(pdf_path)
|
|
|
42 |
for img_index, img in enumerate(page.get_images(full=True)):
|
43 |
xref = img[0]
|
44 |
image = doc.extract_image(xref)
|
45 |
+
img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}"
|
|
|
|
|
46 |
with open(img_path, "wb") as f:
|
47 |
+
f.write(image["image"])
|
48 |
images.append(img_path)
|
49 |
return images
|
50 |
|
51 |
+
# Extract images from PowerPoint
|
|
|
52 |
def extract_images_from_pptx(pptx_path):
|
53 |
images = []
|
54 |
prs = Presentation(pptx_path)
|
55 |
for i, slide in enumerate(prs.slides):
|
56 |
for shape in slide.shapes:
|
57 |
+
if shape.shape_type == 13:
|
58 |
+
img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}"
|
|
|
|
|
|
|
59 |
with open(img_path, "wb") as f:
|
60 |
+
f.write(shape.image.blob)
|
61 |
images.append(img_path)
|
62 |
return images
|
63 |
|
64 |
+
# Convert text to embeddings
|
|
|
65 |
def get_text_embedding(text):
|
66 |
return text_model.encode(text).tolist()
|
67 |
|
68 |
+
# Extract image embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def get_image_embedding(image_path):
|
|
|
|
|
|
|
70 |
image = Image.open(image_path)
|
71 |
inputs = processor(images=image, return_tensors="pt")
|
|
|
72 |
with torch.no_grad():
|
73 |
+
image_embedding = model.get_image_features(**inputs).numpy().flatten()
|
74 |
+
return image_embedding.tolist()
|
|
|
75 |
|
76 |
+
# Store Data in ChromaDB
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def store_data(texts, image_paths):
|
|
|
78 |
for i, text in enumerate(texts):
|
79 |
+
collection.add(ids=[f"text_{i}"], embeddings=[get_text_embedding(text)], documents=[text])
|
|
|
|
|
80 |
|
81 |
+
# Collect image embeddings first
|
82 |
+
all_embeddings = [get_image_embedding(img_path) for img_path in image_paths]
|
83 |
+
all_embeddings = np.array(all_embeddings)
|
84 |
+
|
85 |
+
# Apply PCA if enough images exist
|
86 |
+
if all_embeddings.shape[0] >= 384:
|
87 |
+
pca = PCA(n_components=384)
|
88 |
+
transformed_embeddings = pca.fit_transform(all_embeddings)
|
89 |
+
else:
|
90 |
+
transformed_embeddings = all_embeddings # Use original embeddings
|
91 |
+
|
92 |
+
for j, img_path in enumerate(image_paths):
|
93 |
+
collection.add(ids=[f"image_{j}"], embeddings=[transformed_embeddings[j].tolist()], documents=[img_path])
|
94 |
|
95 |
print("Data stored successfully!")
|
96 |
|
97 |
+
# Process and store from files
|
98 |
def process_and_store(pdf_path=None, pptx_path=None):
|
99 |
texts, images = [], []
|
|
|
100 |
if pdf_path:
|
|
|
101 |
texts.append(extract_text_from_pdf(pdf_path))
|
102 |
images.extend(extract_images_from_pdf(pdf_path))
|
|
|
103 |
if pptx_path:
|
|
|
104 |
texts.append(extract_text_from_pptx(pptx_path))
|
105 |
images.extend(extract_images_from_pptx(pptx_path))
|
|
|
106 |
store_data(texts, images)
|
107 |
|
|
|
|
|
108 |
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
|
109 |
+
|
110 |
@app.get("/")
|
111 |
def greet_json():
|
|
|
112 |
return {"Hello": "World!"}
|
113 |
|
114 |
@app.get("/test")
|
|
|
118 |
@app.get("/search/")
|
119 |
def search(query: str):
|
120 |
query_embedding = get_text_embedding(query)
|
121 |
+
results = collection.query(query_embeddings=[query_embedding], n_results=5)
|
|
|
|
|
|
|
122 |
return {"results": results["documents"]}
|
|
|
|
|
|