Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,11 +13,13 @@ import chromadb
|
|
13 |
app = FastAPI()
|
14 |
client = chromadb.PersistentClient(path="/data/chroma_db")
|
15 |
collection = client.get_or_create_collection(name="knowledge_base")
|
|
|
16 |
pdf_file="Sutures and Suturing techniques.pdf"
|
17 |
pptx_file="impalnt 1.pptx"
|
18 |
|
19 |
|
20 |
collection = client.get_collection(name="knowledge_base")
|
|
|
21 |
|
22 |
# Initialize models
|
23 |
text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
@@ -100,6 +102,7 @@ def store_data(texts, image_paths):
|
|
100 |
# Store text embeddings
|
101 |
for i, text in enumerate(texts):
|
102 |
text_embedding = get_text_embedding(text)
|
|
|
103 |
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
|
104 |
|
105 |
# Store image embeddings
|
|
|
13 |
app = FastAPI()
|
14 |
client = chromadb.PersistentClient(path="/data/chroma_db")
|
15 |
collection = client.get_or_create_collection(name="knowledge_base")
|
16 |
+
|
17 |
pdf_file="Sutures and Suturing techniques.pdf"
|
18 |
pptx_file="impalnt 1.pptx"
|
19 |
|
20 |
|
21 |
collection = client.get_collection(name="knowledge_base")
|
22 |
+
print("Collection Embedding Dimension:", collection.metadata)
|
23 |
|
24 |
# Initialize models
|
25 |
text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
102 |
# Store text embeddings
|
103 |
for i, text in enumerate(texts):
|
104 |
text_embedding = get_text_embedding(text)
|
105 |
+
print("Embedding Dimension:", len(text_embedding))
|
106 |
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
|
107 |
|
108 |
# Store image embeddings
|