Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
import os
|
3 |
-
import pymupdf
|
4 |
-
from pptx import Presentation
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
import torch
|
7 |
-
from transformers import CLIPProcessor, CLIPModel
|
8 |
from PIL import Image
|
9 |
import chromadb
|
10 |
import numpy as np
|
@@ -14,98 +14,139 @@ app = FastAPI()
|
|
14 |
|
15 |
# Initialize ChromaDB
|
16 |
client = chromadb.PersistentClient(path="/data/chroma_db")
|
17 |
-
collection = client.get_or_create_collection(name="knowledge_base"
|
18 |
|
|
|
19 |
pdf_file = "Sutures and Suturing techniques.pdf"
|
20 |
pptx_file = "impalnt 1.pptx"
|
21 |
|
22 |
-
# Initialize
|
23 |
-
text_model = SentenceTransformer('
|
24 |
-
|
25 |
-
|
26 |
|
|
|
27 |
IMAGE_FOLDER = "/data/extracted_images"
|
28 |
os.makedirs(IMAGE_FOLDER, exist_ok=True)
|
29 |
|
30 |
-
# Extract
|
31 |
def extract_text_from_pdf(pdf_path):
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def extract_text_from_pptx(pptx_path):
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def extract_images_from_pdf(pdf_path):
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
for
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
f.write(image["image"])
|
49 |
-
images.append(img_path)
|
50 |
-
return images
|
51 |
-
|
52 |
-
# Extract images from PowerPoint
|
53 |
-
def extract_images_from_pptx(pptx_path):
|
54 |
-
images = []
|
55 |
-
prs = Presentation(pptx_path)
|
56 |
-
for i, slide in enumerate(prs.slides):
|
57 |
-
for shape in slide.shapes:
|
58 |
-
if shape.shape_type == 13:
|
59 |
-
img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}"
|
60 |
with open(img_path, "wb") as f:
|
61 |
-
f.write(
|
62 |
images.append(img_path)
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
def get_text_embedding(text):
|
67 |
-
return text_model.encode(text).tolist()
|
68 |
|
69 |
-
# Extract
|
70 |
def get_image_embedding(image_path):
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
78 |
def reduce_embedding_dim(embeddings):
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# Store Data in ChromaDB
|
83 |
def store_data(texts, image_paths):
|
84 |
for i, text in enumerate(texts):
|
85 |
-
|
|
|
86 |
|
87 |
-
if
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
for j, img_path in enumerate(image_paths):
|
92 |
-
collection.add(ids=[f"image_{j}"], embeddings=[transformed_embeddings[j]
|
93 |
|
94 |
print("Data stored successfully!")
|
95 |
|
96 |
-
# Process and
|
97 |
def process_and_store(pdf_path=None, pptx_path=None):
|
98 |
texts, images = [], []
|
99 |
if pdf_path:
|
100 |
-
|
|
|
|
|
101 |
images.extend(extract_images_from_pdf(pdf_path))
|
102 |
if pptx_path:
|
103 |
-
|
|
|
|
|
104 |
images.extend(extract_images_from_pptx(pptx_path))
|
105 |
store_data(texts, images)
|
106 |
|
|
|
107 |
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
|
108 |
|
|
|
109 |
@app.get("/")
|
110 |
def greet_json():
|
111 |
return {"Hello": "World!"}
|
@@ -116,6 +157,9 @@ def greet_json():
|
|
116 |
|
117 |
@app.get("/search/")
|
118 |
def search(query: str):
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
import os
|
3 |
+
import pymupdf # PyMuPDF
|
4 |
+
from pptx import Presentation
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
import torch
|
7 |
+
from transformers import CLIPProcessor, CLIPModel
|
8 |
from PIL import Image
|
9 |
import chromadb
|
10 |
import numpy as np
|
|
|
14 |
|
15 |
# Initialize ChromaDB
|
16 |
client = chromadb.PersistentClient(path="/data/chroma_db")
|
17 |
+
collection = client.get_or_create_collection(name="knowledge_base")
|
18 |
|
19 |
+
# File Paths
|
20 |
pdf_file = "Sutures and Suturing techniques.pdf"
|
21 |
pptx_file = "impalnt 1.pptx"
|
22 |
|
23 |
+
# Initialize Embedding Models
|
24 |
+
text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
25 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
26 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
27 |
|
28 |
+
# Image Storage Folder
|
29 |
IMAGE_FOLDER = "/data/extracted_images"
|
30 |
os.makedirs(IMAGE_FOLDER, exist_ok=True)
|
31 |
|
32 |
+
# Extract Text from PDF
|
33 |
def extract_text_from_pdf(pdf_path):
|
34 |
+
try:
|
35 |
+
doc = pymupdf.open(pdf_path)
|
36 |
+
text = " ".join(page.get_text() for page in doc)
|
37 |
+
return text.strip() if text else None
|
38 |
+
except Exception as e:
|
39 |
+
print(f"Error extracting text from PDF: {e}")
|
40 |
+
return None
|
41 |
+
|
42 |
+
# Extract Text from PPTX
|
43 |
def extract_text_from_pptx(pptx_path):
|
44 |
+
try:
|
45 |
+
prs = Presentation(pptx_path)
|
46 |
+
text = " ".join(
|
47 |
+
shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")
|
48 |
+
)
|
49 |
+
return text.strip() if text else None
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error extracting text from PPTX: {e}")
|
52 |
+
return None
|
53 |
+
|
54 |
+
# Extract Images from PDF
|
55 |
def extract_images_from_pdf(pdf_path):
|
56 |
+
try:
|
57 |
+
doc = pymupdf.open(pdf_path)
|
58 |
+
images = []
|
59 |
+
for i, page in enumerate(doc):
|
60 |
+
for img_index, img in enumerate(page.get_images(full=True)):
|
61 |
+
xref = img[0]
|
62 |
+
image = doc.extract_image(xref)
|
63 |
+
img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
with open(img_path, "wb") as f:
|
65 |
+
f.write(image["image"])
|
66 |
images.append(img_path)
|
67 |
+
return images
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Error extracting images from PDF: {e}")
|
70 |
+
return []
|
71 |
|
72 |
+
# Extract Images from PPTX
|
73 |
+
def extract_images_from_pptx(pptx_path):
|
74 |
+
try:
|
75 |
+
images = []
|
76 |
+
prs = Presentation(pptx_path)
|
77 |
+
for i, slide in enumerate(prs.slides):
|
78 |
+
for shape in slide.shapes:
|
79 |
+
if shape.shape_type == 13:
|
80 |
+
img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}"
|
81 |
+
with open(img_path, "wb") as f:
|
82 |
+
f.write(shape.image.blob)
|
83 |
+
images.append(img_path)
|
84 |
+
return images
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error extracting images from PPTX: {e}")
|
87 |
+
return []
|
88 |
+
|
89 |
+
# Convert Text to Embeddings
|
90 |
def get_text_embedding(text):
|
91 |
+
return text_model.encode(text).tolist()
|
92 |
|
93 |
+
# Extract Image Embeddings
|
94 |
def get_image_embedding(image_path):
|
95 |
+
try:
|
96 |
+
image = Image.open(image_path)
|
97 |
+
inputs = processor(images=image, return_tensors="pt")
|
98 |
+
with torch.no_grad():
|
99 |
+
image_embedding = model.get_image_features(**inputs).numpy().flatten()
|
100 |
+
return image_embedding.tolist()
|
101 |
+
except Exception as e:
|
102 |
+
print(f"Error generating image embedding: {e}")
|
103 |
+
return None
|
104 |
+
|
105 |
+
# Reduce Embedding Dimensions (If Needed)
|
106 |
def reduce_embedding_dim(embeddings):
|
107 |
+
try:
|
108 |
+
embeddings = np.array(embeddings)
|
109 |
+
n_components = min(embeddings.shape[0], embeddings.shape[1], 384) # Ensure valid PCA size
|
110 |
+
pca = PCA(n_components=n_components)
|
111 |
+
return pca.fit_transform(embeddings).tolist()
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error in PCA transformation: {e}")
|
114 |
+
return embeddings.tolist() # Return original embeddings if PCA fails
|
115 |
|
116 |
# Store Data in ChromaDB
|
117 |
def store_data(texts, image_paths):
|
118 |
for i, text in enumerate(texts):
|
119 |
+
if text:
|
120 |
+
collection.add(ids=[f"text_{i}"], embeddings=[get_text_embedding(text)], documents=[text])
|
121 |
|
122 |
+
all_embeddings = [get_image_embedding(img_path) for img_path in image_paths if get_image_embedding(img_path) is not None]
|
123 |
+
if all_embeddings:
|
124 |
+
all_embeddings = np.array(all_embeddings)
|
125 |
+
transformed_embeddings = reduce_embedding_dim(all_embeddings) if all_embeddings.shape[0] > 1 else all_embeddings.tolist()
|
126 |
for j, img_path in enumerate(image_paths):
|
127 |
+
collection.add(ids=[f"image_{j}"], embeddings=[transformed_embeddings[j]], documents=[img_path])
|
128 |
|
129 |
print("Data stored successfully!")
|
130 |
|
131 |
+
# Process and Store from Files
|
132 |
def process_and_store(pdf_path=None, pptx_path=None):
|
133 |
texts, images = [], []
|
134 |
if pdf_path:
|
135 |
+
pdf_text = extract_text_from_pdf(pdf_path)
|
136 |
+
if pdf_text:
|
137 |
+
texts.append(pdf_text)
|
138 |
images.extend(extract_images_from_pdf(pdf_path))
|
139 |
if pptx_path:
|
140 |
+
pptx_text = extract_text_from_pptx(pptx_path)
|
141 |
+
if pptx_text:
|
142 |
+
texts.append(pptx_text)
|
143 |
images.extend(extract_images_from_pptx(pptx_path))
|
144 |
store_data(texts, images)
|
145 |
|
146 |
+
# Run Data Processing
|
147 |
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
|
148 |
|
149 |
+
# FastAPI Endpoints
|
150 |
@app.get("/")
|
151 |
def greet_json():
|
152 |
return {"Hello": "World!"}
|
|
|
157 |
|
158 |
@app.get("/search/")
|
159 |
def search(query: str):
|
160 |
+
try:
|
161 |
+
query_embedding = get_text_embedding(query)
|
162 |
+
results = collection.query(query_embeddings=[query_embedding], n_results=5)
|
163 |
+
return {"results": results.get("documents", [])}
|
164 |
+
except Exception as e:
|
165 |
+
return {"error": str(e)}
|