Rehan3024 commited on
Commit
ea377b5
1 Parent(s): e913eeb

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
3
+ from sentence_transformers import SentenceTransformer
4
+
5
+ # Load the models
6
+ embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
7
+ summarization_model_name = 'facebook/bart-large-cnn'
8
+ tokenizer = AutoTokenizer.from_pretrained(summarization_model_name)
9
+ summarization_model = AutoModelForSeq2SeqLM.from_pretrained(summarization_model_name)
10
+
11
+ # Define the summarization function
12
+ def summarize_document(document):
13
+ inputs = tokenizer(document, return_tensors='pt', max_length=1024, truncation=True)
14
+ summary_ids = summarization_model.generate(inputs['input_ids'], max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
15
+ return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
16
+
17
+ # Streamlit app
18
+ st.title("Content Summarizer")
19
+ st.write("Enter a document below to get a summary.")
20
+
21
+ document = st.text_area("Document")
22
+
23
+ if st.button("Summarize"):
24
+ if document:
25
+ with st.spinner('Summarizing...'):
26
+ summary = summarize_document(document)
27
+ st.write("**Summary:**")
28
+ st.write(summary)
29
+ else:
30
+ st.write("Please enter a document to summarize.")