Spaces:
Running
Running
import pandas as pd | |
from prophet import Prophet | |
import gradio as gr | |
import plotly.graph_objs as go | |
# Function to train the model and generate forecast | |
def predict_sales(time_frame): | |
all_sales_data = pd.read_csv('/content/All sales - House of Pizza.csv') | |
# Clean up the 'Total paid' column | |
amount = all_sales_data['Total paid'].str.replace('₨', '', regex=False) | |
amount = amount.str.replace(',', '', regex=False) | |
amount = amount.str.strip() | |
amount = amount.astype(float) | |
# Convert the 'Date' column to datetime, coercing errors | |
all_sales_data['Date'] = pd.to_datetime(all_sales_data['Date'], format='%m/%d/%Y %H:%M', errors='coerce') | |
# Drop rows with invalid dates | |
all_sales_data = all_sales_data.dropna(subset=['Date']) | |
# Prepare the DataFrame | |
df = pd.DataFrame({ | |
'Date': all_sales_data['Date'], | |
'Total paid': amount | |
}) | |
# Prepare Prophet model | |
model = Prophet() | |
df['ds'] = df['Date'] | |
df['y'] = df['Total paid'] | |
model.fit(df[['ds', 'y']]) | |
last_date_value = df['Date'].iloc[-2] | |
# Future forecast based on the time frame | |
future_periods = { | |
'7 days': 7 * 24 * 60, | |
'10 days': 10 * 24 * 60, | |
'15 days': 15 * 24 * 60, | |
'1 month': 30 * 24 * 60 | |
} | |
# Get the future time based on the selected time frame | |
future_time = model.make_future_dataframe(periods=future_periods[time_frame], freq='T') | |
current_time = pd.Timestamp.now() | |
# Set the last historical date in the format 'MM/DD/YYYY HH:MM' | |
last_historical_date = pd.to_datetime(last_date_value, format='%m/%d/%Y %H:%M') | |
# Filter future_time to include rows from the current time and onwards, including future hours and minutes | |
future_only = future_time[(future_time['ds'] >= current_time) & (future_time['ds'] > last_historical_date)] | |
forecast = model.predict(future_only) | |
# Display the forecasted data | |
forecast_table = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(future_periods[time_frame]) | |
# Create a Plotly graph | |
fig = go.Figure() | |
fig.add_trace(go.Scatter( | |
x=forecast['ds'], y=forecast['yhat'], | |
mode='lines+markers', | |
name='Forecasted Sales', | |
line=dict(color='orange'), | |
marker=dict(size=6), | |
hovertemplate='Date: %{x}<br>Forecasted Sales: %{y}<extra></extra>' | |
)) | |
fig.update_layout( | |
title='Sales Forecast using Prophet', | |
xaxis_title='Date and Time', | |
yaxis_title='Sales Price', | |
xaxis=dict(tickformat="%Y-%m-%d %H:%M"), | |
yaxis=dict(autorange=True) | |
) | |
return forecast_table, fig | |
# Gradio interface | |
def run_gradio(): | |
# Create the Gradio Interface | |
time_options = ['7 days', '10 days', '15 days', '1 month'] | |
gr.Interface( | |
fn=predict_sales, # Function to be called | |
inputs=gr.components.Dropdown(time_options, label="Select Forecast Time Range"), # User input | |
outputs=[ | |
gr.components.Dataframe(label="Forecasted Sales Table"), # Forecasted data in tabular form | |
gr.components.Plot(label="Sales Forecast Plot") # Plotly graph output | |
], | |
title="Sales Forecasting with Prophet", | |
description="Select a time range for the forecast and click on the button to train the model and see the results." | |
).launch(debug=True) | |
# Run the Gradio interface | |
if __name__ == '__main__': | |
run_gradio() | |