Rehman1603 commited on
Commit
e6f9a4e
1 Parent(s): acdb5fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +171 -39
app.py CHANGED
@@ -1,50 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import pandas as pd
2
  from prophet import Prophet
3
  import gradio as gr
4
  import plotly.graph_objs as go
5
  import numpy as np
6
- import requests
7
  # Function to train the model and generate forecast
8
  def predict_sales(time_frame):
9
- #login
10
- url="https://livesystem.hisabkarlay.com/auth/login"
11
- payload={
12
- 'username':'testuser',
13
- 'password':'testuser',
14
- 'client_secret':'3udPXhYSfCpktnls1C3TSzI96JLypqUGwJR05RHf',
15
- 'client_id':'4',
16
- 'grant_type':'password'
17
- }
18
- response=requests.post(url,data=payload)
19
- print(response.text)
20
- access_token=response.json()['access_token']
21
- print(access_token)
22
- #fetch all sell data
23
- per_page=-1
24
- url=f"https://livesystem.hisabkarlay.com/connector/api/sell?per_page={per_page}"
25
- headers={
26
- 'Authorization':f'Bearer {access_token}'
27
- }
28
- response=requests.get(url,headers=headers)
29
- data=response.json()['data']
30
- date=[]
31
- amount=[]
32
- for item in data:
33
- date.append(item.get('transaction_date'))
34
- amount.append(float(item.get('final_total')))
35
- data_dict={
36
- 'date':date,
37
- 'amount':amount
38
- }
39
- data_frame=pd.DataFrame(data_dict)
40
- # Convert 'date' column to datetime format
41
- data_frame['date'] = pd.to_datetime(data_frame['date'])
42
 
43
- # Extract only the date part
44
- data_frame['date_only'] = data_frame['date'].dt.date
45
 
46
- # Group by date and calculate total sales
47
- daily_sales = data_frame.groupby('date_only').agg(total_sales=('amount', 'sum')).reset_index()
 
 
48
 
49
  # Prepare the DataFrame for Prophet
50
  df = pd.DataFrame({
@@ -139,7 +271,7 @@ def run_gradio():
139
  outputs=[
140
  gr.components.Dataframe(label="Forecasted Sales Table"), # Forecasted data in tabular form
141
  gr.components.Dataframe(label="Weekend Forecasted Sales Table"), # Weekend forecast data
142
- gr.components.Plot(label="Sales Forecast Plot",min_width=500,scale=2) # Plotly graph output
143
  ],
144
  title="Sales Forecasting with Prophet",
145
  description="Select a time range for the forecast and click on the button to train the model and see the results."
 
1
+ # import pandas as pd
2
+ # from prophet import Prophet
3
+ # import gradio as gr
4
+ # import plotly.graph_objs as go
5
+ # import numpy as np
6
+ # import requests
7
+ # # Function to train the model and generate forecast
8
+ # def predict_sales(time_frame):
9
+ # #login
10
+ # url="https://livesystem.hisabkarlay.com/auth/login"
11
+ # payload={
12
+ # 'username':'testuser',
13
+ # 'password':'testuser',
14
+ # 'client_secret':'3udPXhYSfCpktnls1C3TSzI96JLypqUGwJR05RHf',
15
+ # 'client_id':'4',
16
+ # 'grant_type':'password'
17
+ # }
18
+ # response=requests.post(url,data=payload)
19
+ # print(response.text)
20
+ # access_token=response.json()['access_token']
21
+ # print(access_token)
22
+ # #fetch all sell data
23
+ # per_page=-1
24
+ # url=f"https://livesystem.hisabkarlay.com/connector/api/sell?per_page={per_page}"
25
+ # headers={
26
+ # 'Authorization':f'Bearer {access_token}'
27
+ # }
28
+ # response=requests.get(url,headers=headers)
29
+ # data=response.json()['data']
30
+ # date=[]
31
+ # amount=[]
32
+ # for item in data:
33
+ # date.append(item.get('transaction_date'))
34
+ # amount.append(float(item.get('final_total')))
35
+ # data_dict={
36
+ # 'date':date,
37
+ # 'amount':amount
38
+ # }
39
+ # data_frame=pd.DataFrame(data_dict)
40
+ # # Convert 'date' column to datetime format
41
+ # data_frame['date'] = pd.to_datetime(data_frame['date'])
42
+
43
+ # # Extract only the date part
44
+ # data_frame['date_only'] = data_frame['date'].dt.date
45
+
46
+ # # Group by date and calculate total sales
47
+ # daily_sales = data_frame.groupby('date_only').agg(total_sales=('amount', 'sum')).reset_index()
48
+
49
+ # # Prepare the DataFrame for Prophet
50
+ # df = pd.DataFrame({
51
+ # 'Date': daily_sales['date_only'],
52
+ # 'Total paid': daily_sales['total_sales']
53
+ # })
54
+
55
+ # # Apply log transformation
56
+ # df['y'] = np.log1p(df['Total paid']) # Using log1p to avoid log(0)
57
+
58
+ # # Prepare Prophet model
59
+ # model = Prophet(weekly_seasonality=True) # Enable weekly seasonality
60
+ # df['ds'] = df['Date']
61
+ # model.fit(df[['ds', 'y']])
62
+
63
+ # # Future forecast based on the time frame
64
+ # future_periods = {
65
+ # 'Next Day': 1,
66
+ # '7 days': 7,
67
+ # '10 days': 10,
68
+ # '15 days': 15,
69
+ # '1 month': 30
70
+ # }
71
+
72
+ # # Get the last historical date and calculate the start date for the forecast
73
+ # last_date_value = df['Date'].iloc[-1]
74
+ # forecast_start_date = pd.Timestamp(last_date_value) + pd.Timedelta(days=1) # Start the forecast from the next day
75
+
76
+ # # Generate the future time DataFrame starting from the day after the last date
77
+ # future_time = model.make_future_dataframe(periods=future_periods[time_frame], freq='D')
78
+
79
+ # # Filter future_time to include only future dates starting from forecast_start_date
80
+ # future_only = future_time[future_time['ds'] >= forecast_start_date]
81
+ # forecast = model.predict(future_only)
82
+
83
+ # # Exponentiate the forecast to revert back to the original scale
84
+ # forecast['yhat'] = np.expm1(forecast['yhat']) # Use expm1 to handle the log transformation
85
+ # forecast['yhat_lower'] = np.expm1(forecast['yhat_lower']) # Exponentiate lower bound
86
+ # forecast['yhat_upper'] = np.expm1(forecast['yhat_upper']) # Exponentiate upper bound
87
+
88
+ # # Create a DataFrame for weekends only
89
+ # forecast['day_of_week'] = forecast['ds'].dt.day_name() # Get the day name from the date
90
+ # weekends = forecast[forecast['day_of_week'].isin(['Saturday', 'Sunday'])] # Filter for weekends
91
+
92
+ # # Display the forecasted data for the specified period
93
+ # forecast_table = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].head(future_periods[time_frame])
94
+ # weekend_forecast_table = weekends[['ds', 'yhat', 'yhat_lower', 'yhat_upper']] # Weekend forecast
95
+
96
+ # # Create a Plotly graph
97
+ # fig = go.Figure()
98
+ # fig.add_trace(go.Scatter(
99
+ # x=forecast['ds'], y=forecast['yhat'],
100
+ # mode='lines+markers',
101
+ # name='Forecasted Sales',
102
+ # line=dict(color='orange'),
103
+ # marker=dict(size=6),
104
+ # hovertemplate='Date: %{x}<br>Forecasted Sales: %{y}<extra></extra>'
105
+ # ))
106
+
107
+ # # Add lines for yhat_lower and yhat_upper
108
+ # fig.add_trace(go.Scatter(
109
+ # x=forecast['ds'], y=forecast['yhat_lower'],
110
+ # mode='lines',
111
+ # name='Lower Bound',
112
+ # line=dict(color='red', dash='dash')
113
+ # ))
114
+
115
+ # fig.add_trace(go.Scatter(
116
+ # x=forecast['ds'], y=forecast['yhat_upper'],
117
+ # mode='lines',
118
+ # name='Upper Bound',
119
+ # line=dict(color='green', dash='dash')
120
+ # ))
121
+
122
+ # fig.update_layout(
123
+ # title='Sales Forecast using Prophet',
124
+ # xaxis_title='Date',
125
+ # yaxis_title='Sales Price',
126
+ # xaxis=dict(tickformat="%Y-%m-%d"),
127
+ # yaxis=dict(autorange=True)
128
+ # )
129
+
130
+ # return forecast_table, weekend_forecast_table, fig # Return the forecast table, weekend forecast, and plot
131
+
132
+ # # Gradio interface
133
+ # def run_gradio():
134
+ # # Create the Gradio Interface
135
+ # time_options = ['Next Day', '7 days', '10 days', '15 days', '1 month']
136
+ # gr.Interface(
137
+ # fn=predict_sales, # Function to be called
138
+ # inputs=gr.components.Dropdown(time_options, label="Select Forecast Time Range"), # User input
139
+ # outputs=[
140
+ # gr.components.Dataframe(label="Forecasted Sales Table"), # Forecasted data in tabular form
141
+ # gr.components.Dataframe(label="Weekend Forecasted Sales Table"), # Weekend forecast data
142
+ # gr.components.Plot(label="Sales Forecast Plot",min_width=500,scale=2) # Plotly graph output
143
+ # ],
144
+ # title="Sales Forecasting with Prophet",
145
+ # description="Select a time range for the forecast and click on the button to train the model and see the results."
146
+ # ).launch(debug=True)
147
+
148
+ # # Run the Gradio interface
149
+ # if __name__ == '__main__':
150
+ # run_gradio()
151
  import pandas as pd
152
  from prophet import Prophet
153
  import gradio as gr
154
  import plotly.graph_objs as go
155
  import numpy as np
156
+
157
  # Function to train the model and generate forecast
158
  def predict_sales(time_frame):
159
+ all_sales_data = pd.read_csv('All sales - House of Pizza.csv')
160
+
161
+ # Clean up the 'Total paid' column by splitting based on '₨' symbol and converting to float
162
+ def clean_total_paid(val):
163
+ if isinstance(val, str): # Only process if the value is a string
164
+ amounts = [float(x.replace(',', '').strip()) for x in val.split('₨') if x.strip()]
165
+ return sum(amounts) # Sum if multiple values exist
166
+ elif pd.isna(val): # Handle NaN values
167
+ return 0.0
168
+ return val # If it's already a float, return it as-is
169
+
170
+ # Apply the cleaning function to the 'Total paid' column
171
+ all_sales_data['Total paid'] = all_sales_data['Total paid'].apply(clean_total_paid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
+ # Convert the 'Date' column to datetime, coercing errors
174
+ all_sales_data['Date'] = pd.to_datetime(all_sales_data['Date'], format='%m/%d/%Y %H:%M', errors='coerce')
175
 
176
+ # Drop rows with invalid dates
177
+ all_sales_data = all_sales_data.dropna(subset=['Date'])
178
+ all_sales_data['date_only'] = all_sales_data['Date'].dt.date
179
+ daily_sales = all_sales_data.groupby('date_only').agg(total_sales=('Total paid', 'sum')).reset_index()
180
 
181
  # Prepare the DataFrame for Prophet
182
  df = pd.DataFrame({
 
271
  outputs=[
272
  gr.components.Dataframe(label="Forecasted Sales Table"), # Forecasted data in tabular form
273
  gr.components.Dataframe(label="Weekend Forecasted Sales Table"), # Weekend forecast data
274
+ gr.components.Plot(label="Sales Forecast Plot") # Plotly graph output
275
  ],
276
  title="Sales Forecasting with Prophet",
277
  description="Select a time range for the forecast and click on the button to train the model and see the results."