Spaces:
Running
Running
import gradio as gr | |
import torch | |
import moviepy.editor as mpe | |
from PIL import Image, ImageDraw, ImageFont | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from min_dalle import MinDalle | |
from gtts import gTTS | |
from pydub import AudioSegment | |
import nltk | |
import textwrap | |
import os | |
import glob | |
import subprocess | |
import imageio_ffmpeg | |
# Ensure 'punkt' is downloaded for nltk | |
try: | |
nltk.data.find('tokenizers/punkt') | |
except LookupError: | |
nltk.download('punkt') | |
# Download FFmpeg using imageio_ffmpeg (more robust) | |
try: | |
imageio_ffmpeg.get_ffmpeg_exe() | |
print("FFmpeg downloaded successfully (if not already present).") | |
except Exception as e: | |
print(f"Error downloading FFmpeg using imageio_ffmpeg: {e}") | |
raise | |
description = "Video Story Generator with Audio \n PS: Generation of video by using Artificial Intelligence by dalle-mini and distilbart and gtss " | |
title = "Video Story Generator with Audio by using dalle-mini and distilbart and gtss " | |
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6") | |
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6") | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
print(device) | |
def get_output_video(text): | |
inputs = tokenizer(text, | |
max_length=1024, | |
truncation=True, | |
return_tensors="pt").to(device) | |
summary_ids = model.generate(inputs["input_ids"]) | |
summary = tokenizer.batch_decode(summary_ids, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False) | |
plot = list(summary[0].split('.')) | |
''' | |
The required models will be downloaded to models_root if they are not already there. | |
Set the dtype to torch.float16 to save GPU memory. | |
If you have an Ampere architecture GPU you can use torch.bfloat16. | |
Set the device to either "cuda" or "cpu". Once everything has finished initializing, | |
float32 is faster than float16 but uses more GPU memory. | |
''' | |
def generate_image( | |
is_mega: bool, | |
text: str, | |
seed: int, | |
grid_size: int, | |
top_k: int, | |
image_path: str, | |
models_root: str, | |
fp16: bool, | |
): | |
model = MinDalle( | |
is_mega=is_mega, | |
models_root=models_root, | |
is_reusable=True, | |
is_verbose=True, | |
dtype=torch.float16 if fp16 else torch.float32, | |
device=device | |
) | |
image = model.generate_image( | |
text, | |
seed, | |
grid_size, | |
top_k=top_k, | |
is_verbose=True | |
) | |
return image | |
generated_images = [] | |
for senten in plot[:-1]: | |
image = generate_image( | |
is_mega=True, | |
text=senten, | |
seed=1, | |
grid_size=1, # param {type:"integer"} | |
top_k=256, # param {type:"integer"} | |
image_path='generated', | |
models_root='pretrained', | |
fp16=True, ) | |
generated_images.append(image) | |
# Step 4- Creation of the subtitles | |
sentences = plot[:-1] | |
num_sentences = len(sentences) | |
assert len(generated_images) == len(sentences), print('Something is wrong') | |
# We can generate our list of subtitles | |
from nltk import tokenize | |
c = 0 | |
sub_names = [] | |
for k in range(len(generated_images)): | |
subtitles = tokenize.sent_tokenize(sentences[k]) | |
sub_names.append(subtitles) | |
# Step 5- Adding Subtitles to the Images | |
def draw_multiple_line_text(image, text, font, text_color, text_start_height): | |
draw = ImageDraw.Draw(image) | |
image_width, image_height = image.size | |
y_text = text_start_height | |
lines = textwrap.wrap(text, width=40) | |
for line in lines: | |
line_width, line_height = font.getbbox(line)[2:4] # Use getbbox for better size calculation | |
draw.text(((image_width - line_width) / 2, y_text), | |
line, font=font, fill=text_color) | |
y_text += line_height | |
def add_text_to_img(text1, image_input): | |
''' | |
Testing draw_multiple_line_text | |
''' | |
image = image_input | |
fontsize = 20 # Increased font size | |
path_font = "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf" | |
if not os.path.exists(path_font): | |
# Try alternative location on different systems | |
path_font = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" | |
if not os.path.exists(path_font): | |
print("Font file not found. Subtitles might not be rendered correctly.") | |
path_font = None | |
if path_font is not None: | |
try: | |
font = ImageFont.truetype(path_font, fontsize) | |
text_color = (255, 255, 0) | |
text_start_height = 200 | |
draw_multiple_line_text(image, text1, font, text_color, text_start_height) | |
except Exception as e: | |
print(f"Error loading or using font: {e}") | |
return image | |
generated_images_sub = [] | |
for k in range(len(generated_images)): | |
imagenes = generated_images[k].copy() | |
text_to_add = sub_names[k][0] | |
result = add_text_to_img(text_to_add, imagenes) | |
generated_images_sub.append(result) | |
# Step 7 - Creation of audio | |
c = 0 | |
mp3_names = [] | |
mp3_lengths = [] | |
for k in range(len(generated_images)): | |
text_to_add = sub_names[k][0] | |
print(text_to_add) | |
f_name = 'audio_' + str(c) + '.mp3' | |
mp3_names.append(f_name) | |
# The text that you want to convert to audio | |
mytext = text_to_add | |
# Language in which you want to convert | |
language = 'en' | |
# Passing the text and language to the engine, | |
# here we have marked slow=False. Which tells | |
# the module that the converted audio should | |
# have a high speed | |
myobj = gTTS(text=mytext, lang=language, slow=False) | |
# Saving the converted audio in a mp3 file named | |
sound_file = f_name | |
myobj.save(sound_file) | |
audio = AudioSegment.from_file(sound_file, format="mp3") | |
duration = len(audio) / 1000 | |
mp3_lengths.append(duration) | |
print(duration) | |
c += 1 | |
# Step 8 - Merge audio files | |
cwd = os.getcwd().replace(chr(92), '/') | |
export_path = 'result.mp3' | |
silence = AudioSegment.silent(duration=500) | |
full_audio = AudioSegment.empty() | |
for n, mp3_file in enumerate(mp3_names): | |
mp3_file = mp3_file.replace(chr(92), '/') | |
print(n, mp3_file) | |
# Load the current mp3 into `audio_segment` | |
audio_segment = AudioSegment.from_mp3(mp3_file) | |
# Just accumulate the new `audio_segment` + `silence` | |
full_audio += audio_segment + silence | |
print('Merging ', n) | |
# The loop will exit once all files in the list have been used | |
# Then export | |
full_audio.export(export_path, format='mp3') | |
print('\ndone!') | |
# Step 9 - Creation of the video with adjusted times of the sound | |
c = 0 | |
file_names = [] | |
for img in generated_images_sub: | |
f_name = 'img_' + str(c) + '.jpg' | |
file_names.append(f_name) | |
img.save(f_name) | |
c += 1 | |
print(file_names) | |
clips = [] | |
d = 0 | |
for m in file_names: | |
duration = mp3_lengths[d] | |
print(d, duration) | |
clips.append(mpe.ImageClip(m).set_duration(duration + 0.5)) | |
d += 1 | |
concat_clip = mpe.concatenate_videoclips(clips, method="compose") | |
concat_clip.write_videofile("result_new.mp4", fps=24) | |
# Step 10 - Merge Video + Audio | |
movie_name = 'result_new.mp4' | |
export_path = 'result.mp3' | |
movie_final = 'result_final.mp4' | |
def combine_audio(vidname, audname, outname, fps=24): | |
my_clip = mpe.VideoFileClip(vidname) | |
audio_background = mpe.AudioFileClip(audname) | |
final_clip = my_clip.set_audio(audio_background) | |
final_clip.write_videofile(outname, fps=fps) | |
combine_audio(movie_name, export_path, movie_final) # create a new file | |
# Cleanup intermediate files | |
for f in file_names: | |
os.remove(f) | |
for f in mp3_names: | |
os.remove(f) | |
os.remove("result_new.mp4") | |
os.remove("result.mp3") | |
return 'result_final.mp4' | |
text = 'Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.' | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("# Video Generator from stories with Artificial Intelligence") | |
gr.Markdown( | |
"A story can be input by user. The story is summarized using DistillBART model. Then, then it is generated the images by using Dalle-mini and created the subtitles and audio gtts. These are generated as a video.") | |
with gr.Row(): | |
# Left column (inputs) | |
with gr.Column(): | |
input_start_text = gr.Textbox(value=text, | |
label="Type your story here, for now a sample story is added already!") | |
with gr.Row(): | |
button_gen_video = gr.Button("Generate Video") | |
# Right column (outputs) | |
with gr.Column(): | |
output_interpolation = gr.Video(label="Generated Video") | |
gr.Markdown("<h3>Future Works </h3>") | |
gr.Markdown( | |
"This program text-to-video AI software generating videos from any prompt! AI software to build an art gallery. The future version will use Dalle-2 For more info visit [ruslanmv.com](https://ruslanmv.com/) ") | |
button_gen_video.click(fn=get_output_video, inputs=input_start_text, outputs=output_interpolation) | |
demo.launch(debug=False) |