Spaces:
Sleeping
Sleeping
File size: 6,557 Bytes
5722bc8 62c55b2 5722bc8 62c55b2 5722bc8 62c55b2 5722bc8 0f83a12 0fd2df7 0f83a12 5722bc8 62c55b2 0fd2df7 62c55b2 0fd2df7 62c55b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
import requests
import pandas as pd
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import CSVLoader
from langchain_together import TogetherEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain.document_loaders import CSVLoader
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
from langchain_core.vectorstores import InMemoryVectorStore
from langchain import PromptTemplate
from langchain import LLMChain
from langchain_together import Together
import os
os.environ['TOGETHER_API_KEY'] = "c2f52626b97118b71c0c36f66eda4f5957c8fc475e760c3d72f98ba07d3ed3b5"
# Initialize global variable for vectorstore
vectorstore = None
embeddings = TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval")
llama3 = Together(model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo", max_tokens=1024)
def update_csv_files():
# Define the login URL and credentials
login_url = "https://livesystem.hisabkarlay.com/auth/login"
payload = {
"username": "user@123",
"password": "user@123",
"client_secret": "kNqJjlPkxyHdIKt3szCt4PYFWtFOdUheb8QVN8vQ",
"client_id": "5",
"grant_type": "password"
}
# Send a POST request to the login URL
response = requests.post(login_url, data=payload)
# Check the status and get the response data
if response.status_code == 200:
access_token = response.json()['access_token']
else:
return f"Failed to log in: {response.status_code}"
# Profit loss Fetch report
report_url = "https://livesystem.hisabkarlay.com/connector/api/profit-loss-report"
headers = {
"Authorization": f"Bearer {access_token}"
}
response = requests.get(report_url, headers=headers)
profit_loss_data = response.json()['data']
keys = list(profit_loss_data.keys())
del keys[23] # Adjust according to your needs
del keys[20]
del keys[19]
data_dict = {}
for key in keys:
data_dict[key] = profit_loss_data.get(key)
df = pd.DataFrame(data_dict, index=[0])
df.to_csv('profit_loss.csv', index=False)
# API call to get purchase-sell data
report_url = "https://livesystem.hisabkarlay.com/connector/api/purchase-sell"
response = requests.get(report_url, headers=headers)
sell_purchase_data = response.json()
sell_purchase_data = dict(list(sell_purchase_data.items())[2:])
df = pd.json_normalize(sell_purchase_data)
df.to_csv('purchase_sell_report.csv', index=False)
# API call to get trending product data
report_url = "https://livesystem.hisabkarlay.com/connector/api/trending-products"
response = requests.get(report_url, headers=headers)
trending_product_data = response.json()['data']
df = pd.DataFrame(trending_product_data)
df.columns = ['Product Units Sold', 'Product Name', 'Unit Type', 'SKU (Stock Keeping Unit)']
df.to_csv('trending_product.csv', index=False)
return "CSV files updated successfully!"
def initialize_embedding():
global vectorstore
# Initialize the embedding function
# Load CSV files
file_paths = [
"profit_loss.csv",
"purchase_sell_report.csv",
"trending_product.csv"
]
documents = []
for path in file_paths:
loader = CSVLoader(path, encoding="windows-1252")
documents.extend(loader.load()) # Combine documents from all files
# Create an InMemoryVectorStore from the combined documents
vectorstore = InMemoryVectorStore.from_texts(
[doc.page_content for doc in documents], # Extract the page_content from Document objects
embedding=embeddings,
)
return "Embeddings initialized successfully!"
def qa_chain(query):
if vectorstore is None:
return "Please initialize the embeddings first."
retriever = vectorstore.as_retriever()
retrieved_documents = retriever.invoke(query)
return retrieved_documents # Not shown directly in the UI
def generate_response(query, history):
if vectorstore is None:
return history, "Please initialize the embeddings first."
retrieved_documents = qa_chain(query) # Call qa_chain internally
chat_template = """
You are a highly intelligent and professional AI assistant.
Generate the response according to the user's query:
- If the user enters a greeting (e.g., "Hi", "Hello", "Good day"), give the following response:
"Welcome to HisabKarLay, your business partner! You may choose from the following services π:
1. Reports
2. Forecasts
3. Best Selling Items
4. Chat with AI Agent
5. Chat with our Customer Care Team
6. Share your Feedback
7. Checkout Latest Offers
π Suggestion: To make a selection, send the relevant number like 1
β Note: If at any stage you wish to go back to the previous menu, type back, and to go to the main menu, type main menu.
β Note: If you want to change the language, type and send 'change language.'
ππ»βοΈ Help: If you need any help, you can call us at +923269498569."
- If the user enters a specific number (1-7), give the following responses...
"""
prompt = PromptTemplate(
input_variables=['retrieved_documents', 'query'],
template=chat_template
)
Generated_chat = LLMChain(llm=llama3, prompt=prompt)
result = Generated_chat.run({
"retrieved_documents": retrieved_documents,
"query": query
})
# Append the conversation history
history.append((query, result))
return history, result
# Define Gradio UI
with gr.Blocks() as demo:
chatbot = gr.Chatbot(label="AI Chat")
query = gr.Textbox(label="Ask anything!", placeholder="Type your question here")
initialize_status = gr.Textbox(label="Status", visible=False)
update_csv_status = gr.Textbox(label="Status", visible=False)
initialize_button = gr.Button("Initialize Embeddings")
update_csv_button = gr.Button("Update CSV Files")
def on_query(query, history):
return generate_response(query, history)
query.submit(on_query, [query, chatbot], [chatbot, query])
initialize_button.click(initialize_embedding, outputs=initialize_status)
update_csv_button.click(update_csv_files, outputs=update_csv_status)
# Launch Gradio App
demo.launch()
|