File size: 6,557 Bytes
5722bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62c55b2
5722bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62c55b2
5722bc8
62c55b2
5722bc8
 
 
0f83a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd2df7
0f83a12
5722bc8
 
 
 
 
 
62c55b2
 
 
 
 
 
 
 
 
 
 
 
 
0fd2df7
 
 
62c55b2
 
 
 
 
 
 
 
0fd2df7
 
62c55b2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import requests
import pandas as pd
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import CSVLoader
from langchain_together import TogetherEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain.document_loaders import CSVLoader
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
from langchain_core.vectorstores import InMemoryVectorStore
from langchain import PromptTemplate
from langchain import LLMChain
from langchain_together import Together
import os


os.environ['TOGETHER_API_KEY'] = "c2f52626b97118b71c0c36f66eda4f5957c8fc475e760c3d72f98ba07d3ed3b5"

# Initialize global variable for vectorstore
vectorstore = None
embeddings = TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval")
llama3 = Together(model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo", max_tokens=1024)

def update_csv_files():
    # Define the login URL and credentials
    login_url = "https://livesystem.hisabkarlay.com/auth/login"
    payload = {
        "username": "user@123",
        "password": "user@123",
        "client_secret": "kNqJjlPkxyHdIKt3szCt4PYFWtFOdUheb8QVN8vQ",
        "client_id": "5",
        "grant_type": "password"
    }

    # Send a POST request to the login URL
    response = requests.post(login_url, data=payload)

    # Check the status and get the response data
    if response.status_code == 200:
        access_token = response.json()['access_token']
    else:
        return f"Failed to log in: {response.status_code}"

    # Profit loss Fetch report
    report_url = "https://livesystem.hisabkarlay.com/connector/api/profit-loss-report"
    headers = {
        "Authorization": f"Bearer {access_token}"
    }
    response = requests.get(report_url, headers=headers)
    profit_loss_data = response.json()['data']
    keys = list(profit_loss_data.keys())
    del keys[23]  # Adjust according to your needs
    del keys[20]
    del keys[19]
    data_dict = {}
    for key in keys:
        data_dict[key] = profit_loss_data.get(key)
    df = pd.DataFrame(data_dict, index=[0])
    df.to_csv('profit_loss.csv', index=False)

    # API call to get purchase-sell data
    report_url = "https://livesystem.hisabkarlay.com/connector/api/purchase-sell"
    response = requests.get(report_url, headers=headers)
    sell_purchase_data = response.json()
    sell_purchase_data = dict(list(sell_purchase_data.items())[2:])
    df = pd.json_normalize(sell_purchase_data)
    df.to_csv('purchase_sell_report.csv', index=False)

    # API call to get trending product data
    report_url = "https://livesystem.hisabkarlay.com/connector/api/trending-products"
    response = requests.get(report_url, headers=headers)
    trending_product_data = response.json()['data']
    df = pd.DataFrame(trending_product_data)
    df.columns = ['Product Units Sold', 'Product Name', 'Unit Type', 'SKU (Stock Keeping Unit)']
    df.to_csv('trending_product.csv', index=False)

    return "CSV files updated successfully!"

def initialize_embedding():
    global vectorstore
    # Initialize the embedding function

    # Load CSV files
    file_paths = [
        "profit_loss.csv",
        "purchase_sell_report.csv",
        "trending_product.csv"
    ]
    documents = []
    for path in file_paths:
        loader = CSVLoader(path, encoding="windows-1252")
        documents.extend(loader.load())  # Combine documents from all files

    # Create an InMemoryVectorStore from the combined documents
    vectorstore = InMemoryVectorStore.from_texts(
        [doc.page_content for doc in documents],  # Extract the page_content from Document objects
        embedding=embeddings,
    )
    return "Embeddings initialized successfully!"

def qa_chain(query):
    if vectorstore is None:
        return "Please initialize the embeddings first."
    
    retriever = vectorstore.as_retriever()
    retrieved_documents = retriever.invoke(query)
    return retrieved_documents  # Not shown directly in the UI

def generate_response(query, history):
    if vectorstore is None:
        return history, "Please initialize the embeddings first."
    
    retrieved_documents = qa_chain(query)  # Call qa_chain internally
    chat_template = """
You are a highly intelligent and professional AI assistant.
Generate the response according to the user's query:
- If the user enters a greeting (e.g., "Hi", "Hello", "Good day"), give the following response:
    "Welcome to HisabKarLay, your business partner! You may choose from the following services πŸ‘‡:
    1. Reports
    2. Forecasts
    3. Best Selling Items
    4. Chat with AI Agent
    5. Chat with our Customer Care Team
    6. Share your Feedback
    7. Checkout Latest Offers
    πŸ”† Suggestion: To make a selection, send the relevant number like 1
    β­• Note: If at any stage you wish to go back to the previous menu, type back, and to go to the main menu, type main menu.
    β­• Note: If you want to change the language, type and send 'change language.'
    πŸ’πŸ»β™‚οΈ Help: If you need any help, you can call us at +923269498569."
- If the user enters a specific number (1-7), give the following responses...
"""
    prompt = PromptTemplate(
        input_variables=['retrieved_documents', 'query'],
        template=chat_template
    )
    
    Generated_chat = LLMChain(llm=llama3, prompt=prompt)
    result = Generated_chat.run({
        "retrieved_documents": retrieved_documents,
        "query": query
    })

    # Append the conversation history
    history.append((query, result))

    return history, result

# Define Gradio UI
with gr.Blocks() as demo:
    chatbot = gr.Chatbot(label="AI Chat")
    query = gr.Textbox(label="Ask anything!", placeholder="Type your question here")
    initialize_status = gr.Textbox(label="Status", visible=False)
    update_csv_status = gr.Textbox(label="Status", visible=False)
    initialize_button = gr.Button("Initialize Embeddings")
    update_csv_button = gr.Button("Update CSV Files")

    def on_query(query, history):
        return generate_response(query, history)
    
    query.submit(on_query, [query, chatbot], [chatbot, query])

    initialize_button.click(initialize_embedding, outputs=initialize_status)
    update_csv_button.click(update_csv_files, outputs=update_csv_status)

# Launch Gradio App
demo.launch()