Rehman1603's picture
Update app.py
10cc401 verified
raw
history blame
5.31 kB
import gradio as gr
import requests
import pandas as pd
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import CSVLoader
from langchain_together import TogetherEmbeddings
from langchain.vectorstores import Chroma
from langchain_core.vectorstores import InMemoryVectorStore
from langchain import PromptTemplate
from langchain import LLMChain
from langchain_together import Together
import os
os.environ['TOGETHER_API_KEY'] = "your_api_key"
# Initialize global variable for vectorstore
vectorstore = None
embeddings = TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval")
llama3 = Together(model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo", max_tokens=1024)
def update_csv_files():
login_url = "https://livesystem.hisabkarlay.com/auth/login"
payload = {
"username": "user@123",
"password": "user@123",
"client_secret": "kNqJjlPkxyHdIKt3szCt4PYFWtFOdUheb8QVN8vQ",
"client_id": "5",
"grant_type": "password"
}
response = requests.post(login_url, data=payload)
if response.status_code == 200:
access_token = response.json()['access_token']
else:
return f"Failed to log in: {response.status_code}"
report_url = "https://livesystem.hisabkarlay.com/connector/api/profit-loss-report"
headers = {"Authorization": f"Bearer {access_token}"}
response = requests.get(report_url, headers=headers)
profit_loss_data = response.json()['data']
keys = list(profit_loss_data.keys())
del keys[23]
del keys[20]
del keys[19]
data_dict = {}
for key in keys:
data_dict[key] = profit_loss_data.get(key)
df = pd.DataFrame(data_dict, index=[0])
df.to_csv('profit_loss.csv', index=False)
report_url = "https://livesystem.hisabkarlay.com/connector/api/purchase-sell"
response = requests.get(report_url, headers=headers)
sell_purchase_data = response.json()
sell_purchase_data = dict(list(sell_purchase_data.items())[2:])
df = pd.json_normalize(sell_purchase_data)
df.to_csv('purchase_sell_report.csv', index=False)
report_url = "https://livesystem.hisabkarlay.com/connector/api/trending-products"
response = requests.get(report_url, headers=headers)
trending_product_data = response.json()['data']
df = pd.DataFrame(trending_product_data)
df.columns = ['Product Units Sold', 'Product Name', 'Unit Type', 'SKU (Stock Keeping Unit)']
df.to_csv('trending_product.csv', index=False)
return "CSV files updated successfully!"
def initialize_embedding():
global vectorstore
file_paths = ["profit_loss.csv", "purchase_sell_report.csv", "trending_product.csv"]
documents = []
for path in file_paths:
loader = CSVLoader(path, encoding="windows-1252")
documents.extend(loader.load())
vectorstore = InMemoryVectorStore.from_texts(
[doc.page_content for doc in documents],
embedding=embeddings,
)
return "Embeddings initialized successfully!"
def qa_chain(query):
if vectorstore is None:
return "Please initialize the embeddings first."
retriever = vectorstore.as_retriever()
retrieved_documents = retriever.invoke(query)
return retrieved_documents
def generate_response(query, history):
if vectorstore is None:
return "Please initialize the embeddings first.", history
retrieved_documents = qa_chain(query)
chat_template = """
You are a highly intelligent and professional AI assistant.
Generate the response according to the user's query:
Context: {retrieved_documents}
Question: {query}
"""
prompt = PromptTemplate(
input_variables=['retrieved_documents', 'query'],
template=chat_template
)
Generated_chat = LLMChain(llm=llama3, prompt=prompt)
response = Generated_chat.invoke({'retrieved_documents': retrieved_documents, 'query': query})
# Ensure history is always a list of two-element lists [query, response]
history.append([query, response['text']])
# Return the updated history and the new response for display
return history, history
def gradio_app():
with gr.Blocks() as app:
gr.Markdown("# Embedding and QA Interface")
# Chatbox elements
chatbot = gr.Chatbot(label="Chat")
query_input = gr.Textbox(label="Enter your query")
generate_response_btn = gr.Button("Generate Response")
# Status output textboxes for CSV update and embedding initialization
update_csv_status = gr.Textbox(label="CSV Update Status", interactive=False)
initialize_status = gr.Textbox(label="Embedding Initialization Status", interactive=False)
# Buttons for CSV update and embedding initialization
update_csv_button = gr.Button("Update CSV Files")
initialize_button = gr.Button("Initialize Embedding")
# Button click actions
update_csv_button.click(update_csv_files, outputs=update_csv_status)
initialize_button.click(initialize_embedding, outputs=initialize_status)
# Chatbot functionality with history
history = gr.State([]) # Chat history state
generate_response_btn.click(generate_response, inputs=[query_input, history], outputs=[chatbot, history])
app.launch()
# Run the Gradio app
gradio_app()