Spaces:
Runtime error
Runtime error
SUPERSHANKY
commited on
Commit
•
74d13e4
1
Parent(s):
127a851
Update app.py
Browse files
app.py
CHANGED
@@ -8,12 +8,10 @@ import time
|
|
8 |
import psutil
|
9 |
import random
|
10 |
|
11 |
-
|
12 |
start_time = time.time()
|
13 |
is_colab = utils.is_google_colab()
|
14 |
state = None
|
15 |
current_steps = 25
|
16 |
-
|
17 |
class Model:
|
18 |
def __init__(self, name, path="", prefix=""):
|
19 |
self.name = name
|
@@ -21,7 +19,6 @@ class Model:
|
|
21 |
self.prefix = prefix
|
22 |
self.pipe_t2i = None
|
23 |
self.pipe_i2i = None
|
24 |
-
|
25 |
models = [
|
26 |
Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
|
27 |
Model("Dreamlike Photoreal 2.0", "dreamlike-art/dreamlike-photoreal-2.0", ""),
|
@@ -121,20 +118,14 @@ models = [
|
|
121 |
Model("Realistic_Vision_V1.4", "SG161222/Realistic_Vision_V1.4", ""),
|
122 |
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
]
|
128 |
-
|
129 |
custom_model = None
|
130 |
if is_colab:
|
131 |
models.insert(0, Model("Custom model"))
|
132 |
custom_model = models[0]
|
133 |
-
|
134 |
last_mode = "txt2img"
|
135 |
current_model = models[1] if is_colab else models[0]
|
136 |
current_model_path = current_model.path
|
137 |
-
|
138 |
if is_colab:
|
139 |
pipe = StableDiffusionPipeline.from_pretrained(
|
140 |
current_model.path,
|
@@ -142,7 +133,6 @@ if is_colab:
|
|
142 |
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
143 |
safety_checker=None
|
144 |
)
|
145 |
-
|
146 |
else:
|
147 |
pipe = StableDiffusionPipeline.from_pretrained(
|
148 |
current_model.path,
|
@@ -153,57 +143,41 @@ else:
|
|
153 |
if torch.cuda.is_available():
|
154 |
pipe = pipe.to("cuda")
|
155 |
pipe.enable_xformers_memory_efficient_attention()
|
156 |
-
|
157 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
158 |
-
|
159 |
def error_str(error, title="Error"):
|
160 |
return f"""#### {title}
|
161 |
{error}""" if error else ""
|
162 |
-
|
163 |
def update_state(new_state):
|
164 |
global state
|
165 |
state = new_state
|
166 |
-
|
167 |
def update_state_info(old_state):
|
168 |
if state and state != old_state:
|
169 |
return gr.update(value=state)
|
170 |
-
|
171 |
def custom_model_changed(path):
|
172 |
models[0].path = path
|
173 |
global current_model
|
174 |
current_model = models[0]
|
175 |
-
|
176 |
def on_model_change(model_name):
|
177 |
|
178 |
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
|
179 |
-
|
180 |
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
181 |
-
|
182 |
def on_steps_change(steps):
|
183 |
global current_steps
|
184 |
current_steps = steps
|
185 |
-
|
186 |
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
|
187 |
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
|
188 |
-
|
189 |
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
190 |
-
|
191 |
update_state(" ")
|
192 |
-
|
193 |
print(psutil.virtual_memory()) # print memory usage
|
194 |
-
|
195 |
global current_model
|
196 |
for model in models:
|
197 |
if model.name == model_name:
|
198 |
current_model = model
|
199 |
model_path = current_model.path
|
200 |
-
|
201 |
# generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
202 |
if seed == 0:
|
203 |
seed = random.randint(0, 2147483647)
|
204 |
-
|
205 |
generator = torch.Generator('cuda').manual_seed(seed)
|
206 |
-
|
207 |
try:
|
208 |
if img is not None:
|
209 |
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
@@ -211,19 +185,14 @@ def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height
|
|
211 |
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
212 |
except Exception as e:
|
213 |
return None, error_str(e)
|
214 |
-
|
215 |
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
|
216 |
-
|
217 |
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
218 |
-
|
219 |
global last_mode
|
220 |
global pipe
|
221 |
global current_model_path
|
222 |
if model_path != current_model_path or last_mode != "txt2img":
|
223 |
current_model_path = model_path
|
224 |
-
|
225 |
update_state(f"Loading {current_model.name} text-to-image model...")
|
226 |
-
|
227 |
if is_colab or current_model == custom_model:
|
228 |
pipe = StableDiffusionPipeline.from_pretrained(
|
229 |
current_model_path,
|
@@ -239,12 +208,10 @@ def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width,
|
|
239 |
)
|
240 |
# pipe = pipe.to("cpu")
|
241 |
# pipe = current_model.pipe_t2i
|
242 |
-
|
243 |
if torch.cuda.is_available():
|
244 |
pipe = pipe.to("cuda")
|
245 |
pipe.enable_xformers_memory_efficient_attention()
|
246 |
last_mode = "txt2img"
|
247 |
-
|
248 |
prompt = current_model.prefix + prompt
|
249 |
result = pipe(
|
250 |
prompt,
|
@@ -256,23 +223,17 @@ def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width,
|
|
256 |
height = height,
|
257 |
generator = generator,
|
258 |
callback=pipe_callback)
|
259 |
-
|
260 |
# update_state(f"Done. Seed: {seed}")
|
261 |
|
262 |
return replace_nsfw_images(result)
|
263 |
-
|
264 |
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
|
265 |
-
|
266 |
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
|
267 |
-
|
268 |
global last_mode
|
269 |
global pipe
|
270 |
global current_model_path
|
271 |
if model_path != current_model_path or last_mode != "img2img":
|
272 |
current_model_path = model_path
|
273 |
-
|
274 |
update_state(f"Loading {current_model.name} image-to-image model...")
|
275 |
-
|
276 |
if is_colab or current_model == custom_model:
|
277 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
278 |
current_model_path,
|
@@ -293,7 +254,6 @@ def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance
|
|
293 |
pipe = pipe.to("cuda")
|
294 |
pipe.enable_xformers_memory_efficient_attention()
|
295 |
last_mode = "img2img"
|
296 |
-
|
297 |
prompt = current_model.prefix + prompt
|
298 |
ratio = min(height / img.height, width / img.width)
|
299 |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
@@ -309,13 +269,10 @@ def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance
|
|
309 |
# height = height,
|
310 |
generator = generator,
|
311 |
callback=pipe_callback)
|
312 |
-
|
313 |
# update_state(f"Done. Seed: {seed}")
|
314 |
|
315 |
return replace_nsfw_images(result)
|
316 |
-
|
317 |
def replace_nsfw_images(results):
|
318 |
-
|
319 |
if is_colab:
|
320 |
return results.images
|
321 |
|
@@ -323,7 +280,6 @@ def replace_nsfw_images(results):
|
|
323 |
if results.nsfw_content_detected[i]:
|
324 |
results.images[i] = Image.open("nsfw.png")
|
325 |
return results.images
|
326 |
-
|
327 |
# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
328 |
# """
|
329 |
with gr.Blocks(css="style.css") as demo:
|
@@ -358,46 +314,36 @@ with gr.Blocks(css="style.css") as demo:
|
|
358 |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
359 |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
360 |
|
361 |
-
|
362 |
# image_out = gr.Image(height=512)
|
363 |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
|
364 |
|
365 |
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
|
366 |
error_output = gr.Markdown()
|
367 |
-
|
368 |
with gr.Column(scale=45):
|
369 |
with gr.Tab("Options"):
|
370 |
with gr.Group():
|
371 |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
372 |
-
|
373 |
n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=10, step=1)
|
374 |
-
|
375 |
with gr.Row():
|
376 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
377 |
steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=250, step=1)
|
378 |
-
|
379 |
with gr.Row():
|
380 |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=2048, step=8)
|
381 |
height = gr.Slider(label="Height", value=512, minimum=64, maximum=2048, step=8)
|
382 |
-
|
383 |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
384 |
-
|
385 |
with gr.Tab("Image to image"):
|
386 |
with gr.Group():
|
387 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
388 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
389 |
-
|
390 |
if is_colab:
|
391 |
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
|
392 |
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
|
393 |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
394 |
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
|
395 |
-
|
396 |
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
|
397 |
outputs = [gallery, error_output]
|
398 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
399 |
generate.click(inference, inputs=inputs, outputs=outputs)
|
400 |
-
|
401 |
ex = gr.Examples([
|
402 |
[models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
|
403 |
[models[4].name, "portrait of dwayne johnson", 7.0, 35],
|
@@ -405,7 +351,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
405 |
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
|
406 |
[models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
|
407 |
], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)
|
408 |
-
|
409 |
gr.HTML("""
|
410 |
<div style="border-top: 1px solid #303030;">
|
411 |
<br>
|
@@ -418,11 +363,8 @@ with gr.Blocks(css="style.css") as demo:
|
|
418 |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
|
419 |
</div>
|
420 |
""")
|
421 |
-
|
422 |
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
|
423 |
-
|
424 |
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
425 |
-
|
426 |
# if not is_colab:
|
427 |
demo.queue(concurrency_count=1)
|
428 |
demo.launch(debug=is_colab, share=True)
|
|
|
8 |
import psutil
|
9 |
import random
|
10 |
|
|
|
11 |
start_time = time.time()
|
12 |
is_colab = utils.is_google_colab()
|
13 |
state = None
|
14 |
current_steps = 25
|
|
|
15 |
class Model:
|
16 |
def __init__(self, name, path="", prefix=""):
|
17 |
self.name = name
|
|
|
19 |
self.prefix = prefix
|
20 |
self.pipe_t2i = None
|
21 |
self.pipe_i2i = None
|
|
|
22 |
models = [
|
23 |
Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
|
24 |
Model("Dreamlike Photoreal 2.0", "dreamlike-art/dreamlike-photoreal-2.0", ""),
|
|
|
118 |
Model("Realistic_Vision_V1.4", "SG161222/Realistic_Vision_V1.4", ""),
|
119 |
|
120 |
|
|
|
|
|
|
|
121 |
]
|
|
|
122 |
custom_model = None
|
123 |
if is_colab:
|
124 |
models.insert(0, Model("Custom model"))
|
125 |
custom_model = models[0]
|
|
|
126 |
last_mode = "txt2img"
|
127 |
current_model = models[1] if is_colab else models[0]
|
128 |
current_model_path = current_model.path
|
|
|
129 |
if is_colab:
|
130 |
pipe = StableDiffusionPipeline.from_pretrained(
|
131 |
current_model.path,
|
|
|
133 |
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
134 |
safety_checker=None
|
135 |
)
|
|
|
136 |
else:
|
137 |
pipe = StableDiffusionPipeline.from_pretrained(
|
138 |
current_model.path,
|
|
|
143 |
if torch.cuda.is_available():
|
144 |
pipe = pipe.to("cuda")
|
145 |
pipe.enable_xformers_memory_efficient_attention()
|
|
|
146 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
|
|
147 |
def error_str(error, title="Error"):
|
148 |
return f"""#### {title}
|
149 |
{error}""" if error else ""
|
|
|
150 |
def update_state(new_state):
|
151 |
global state
|
152 |
state = new_state
|
|
|
153 |
def update_state_info(old_state):
|
154 |
if state and state != old_state:
|
155 |
return gr.update(value=state)
|
|
|
156 |
def custom_model_changed(path):
|
157 |
models[0].path = path
|
158 |
global current_model
|
159 |
current_model = models[0]
|
|
|
160 |
def on_model_change(model_name):
|
161 |
|
162 |
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
|
|
|
163 |
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
|
|
164 |
def on_steps_change(steps):
|
165 |
global current_steps
|
166 |
current_steps = steps
|
|
|
167 |
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
|
168 |
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
|
|
|
169 |
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
|
|
170 |
update_state(" ")
|
|
|
171 |
print(psutil.virtual_memory()) # print memory usage
|
|
|
172 |
global current_model
|
173 |
for model in models:
|
174 |
if model.name == model_name:
|
175 |
current_model = model
|
176 |
model_path = current_model.path
|
|
|
177 |
# generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
178 |
if seed == 0:
|
179 |
seed = random.randint(0, 2147483647)
|
|
|
180 |
generator = torch.Generator('cuda').manual_seed(seed)
|
|
|
181 |
try:
|
182 |
if img is not None:
|
183 |
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
|
|
185 |
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
186 |
except Exception as e:
|
187 |
return None, error_str(e)
|
|
|
188 |
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
|
|
|
189 |
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
|
|
190 |
global last_mode
|
191 |
global pipe
|
192 |
global current_model_path
|
193 |
if model_path != current_model_path or last_mode != "txt2img":
|
194 |
current_model_path = model_path
|
|
|
195 |
update_state(f"Loading {current_model.name} text-to-image model...")
|
|
|
196 |
if is_colab or current_model == custom_model:
|
197 |
pipe = StableDiffusionPipeline.from_pretrained(
|
198 |
current_model_path,
|
|
|
208 |
)
|
209 |
# pipe = pipe.to("cpu")
|
210 |
# pipe = current_model.pipe_t2i
|
|
|
211 |
if torch.cuda.is_available():
|
212 |
pipe = pipe.to("cuda")
|
213 |
pipe.enable_xformers_memory_efficient_attention()
|
214 |
last_mode = "txt2img"
|
|
|
215 |
prompt = current_model.prefix + prompt
|
216 |
result = pipe(
|
217 |
prompt,
|
|
|
223 |
height = height,
|
224 |
generator = generator,
|
225 |
callback=pipe_callback)
|
|
|
226 |
# update_state(f"Done. Seed: {seed}")
|
227 |
|
228 |
return replace_nsfw_images(result)
|
|
|
229 |
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
|
|
|
230 |
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
|
|
|
231 |
global last_mode
|
232 |
global pipe
|
233 |
global current_model_path
|
234 |
if model_path != current_model_path or last_mode != "img2img":
|
235 |
current_model_path = model_path
|
|
|
236 |
update_state(f"Loading {current_model.name} image-to-image model...")
|
|
|
237 |
if is_colab or current_model == custom_model:
|
238 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
239 |
current_model_path,
|
|
|
254 |
pipe = pipe.to("cuda")
|
255 |
pipe.enable_xformers_memory_efficient_attention()
|
256 |
last_mode = "img2img"
|
|
|
257 |
prompt = current_model.prefix + prompt
|
258 |
ratio = min(height / img.height, width / img.width)
|
259 |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
|
|
269 |
# height = height,
|
270 |
generator = generator,
|
271 |
callback=pipe_callback)
|
|
|
272 |
# update_state(f"Done. Seed: {seed}")
|
273 |
|
274 |
return replace_nsfw_images(result)
|
|
|
275 |
def replace_nsfw_images(results):
|
|
|
276 |
if is_colab:
|
277 |
return results.images
|
278 |
|
|
|
280 |
if results.nsfw_content_detected[i]:
|
281 |
results.images[i] = Image.open("nsfw.png")
|
282 |
return results.images
|
|
|
283 |
# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
284 |
# """
|
285 |
with gr.Blocks(css="style.css") as demo:
|
|
|
314 |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
315 |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
316 |
|
|
|
317 |
# image_out = gr.Image(height=512)
|
318 |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
|
319 |
|
320 |
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
|
321 |
error_output = gr.Markdown()
|
|
|
322 |
with gr.Column(scale=45):
|
323 |
with gr.Tab("Options"):
|
324 |
with gr.Group():
|
325 |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
|
|
326 |
n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=10, step=1)
|
|
|
327 |
with gr.Row():
|
328 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
329 |
steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=250, step=1)
|
|
|
330 |
with gr.Row():
|
331 |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=2048, step=8)
|
332 |
height = gr.Slider(label="Height", value=512, minimum=64, maximum=2048, step=8)
|
|
|
333 |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
|
|
334 |
with gr.Tab("Image to image"):
|
335 |
with gr.Group():
|
336 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
337 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
|
|
338 |
if is_colab:
|
339 |
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
|
340 |
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
|
341 |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
342 |
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
|
|
|
343 |
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
|
344 |
outputs = [gallery, error_output]
|
345 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
346 |
generate.click(inference, inputs=inputs, outputs=outputs)
|
|
|
347 |
ex = gr.Examples([
|
348 |
[models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
|
349 |
[models[4].name, "portrait of dwayne johnson", 7.0, 35],
|
|
|
351 |
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
|
352 |
[models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
|
353 |
], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)
|
|
|
354 |
gr.HTML("""
|
355 |
<div style="border-top: 1px solid #303030;">
|
356 |
<br>
|
|
|
363 |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
|
364 |
</div>
|
365 |
""")
|
|
|
366 |
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
|
|
|
367 |
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
|
|
368 |
# if not is_colab:
|
369 |
demo.queue(concurrency_count=1)
|
370 |
demo.launch(debug=is_colab, share=True)
|