File size: 10,536 Bytes
5e70012
 
 
c14628b
a6ac31b
 
c14628b
9992492
5e70012
 
 
c14628b
a6ac31b
 
1b6ee33
a6ac31b
c14628b
a6ac31b
 
1b6ee33
5e70012
 
 
 
 
a6ac31b
 
 
 
 
 
 
 
 
 
624e415
a6ac31b
5e70012
bfda42f
 
 
 
624e415
 
 
 
 
 
 
 
 
 
a6ac31b
263cee5
7893837
263cee5
7893837
a6ac31b
 
bfda42f
5e70012
bfda42f
1db878b
 
 
 
 
 
 
5e70012
 
 
 
 
bfda42f
1bbccbf
5e70012
 
a6c0409
7507930
42a9377
 
ee99142
5e70012
 
bfda42f
1bbccbf
5e70012
 
 
 
bfda42f
1bbccbf
5e70012
cd534b2
5e70012
 
bfda42f
cd534b2
5e70012
 
 
bfda42f
a6ac31b
 
 
 
 
 
 
 
 
 
 
bfda42f
a6ac31b
 
 
 
 
 
 
 
 
5e70012
 
a6ac31b
 
 
 
 
 
 
 
 
 
 
5e70012
a6ac31b
 
578fb43
a6ac31b
5e70012
578fb43
5e70012
 
578fb43
5e70012
 
578fb43
5e70012
3a9ba34
a6ac31b
 
 
 
 
 
 
 
bfda42f
1db878b
7893837
 
 
3a9ba34
a6ac31b
 
624e415
a6ac31b
 
 
 
 
 
5e70012
361d7a3
 
 
 
 
a6ac31b
 
5e70012
a6ac31b
 
 
 
 
 
 
5e70012
624e415
a6ac31b
 
 
 
 
 
 
 
 
 
 
 
 
9992492
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Thank AK. https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0/blob/main/app.py
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, EulerAncestralDiscreteScheduler
from transformers import CLIPFeatureExtractor
import gradio as gr
import torch
from PIL import Image

model_id = 'aipicasso/cool-japan-diffusion-2-1-1-beta'

scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
feature_extractor = CLIPFeatureExtractor.from_pretrained(model_id)

pipe = StableDiffusionPipeline.from_pretrained(
  model_id,
  torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
  scheduler=scheduler)

pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
  model_id,
  torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
  scheduler=scheduler,
  requires_safety_checker=False,
  safety_checker=None,
  feature_extractor=feature_extractor
)

if torch.cuda.is_available():
  pipe = pipe.to("cuda")
  pipe_i2i = pipe_i2i.to("cuda")

def error_str(error, title="Error"):
    return f"""#### {title}
            {error}"""  if error else ""


def inference(prompt, guidance, steps, image_size="Square", seed=0, img=None, strength=0.5, neg_prompt="", cool_japan_type="Anime", disable_auto_prompt_correction=False):

  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None

  if(not disable_auto_prompt_correction):
    prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt,cool_japan_type)

  if(image_size=="Portrait"):
      height=768
      width=576
  elif(image_size=="Landscape"):
      height=576
      width=768  
  else:
      height=512
      width=512
      
  try:
    if img is not None:
      return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
    else:
      return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
  except Exception as e:
    return None, error_str(e)
def auto_prompt_correction(prompt_ui,neg_prompt_ui,cool_japan_type_ui):
    # auto prompt correction
    cool_japan_type=str(cool_japan_type_ui)
    if(cool_japan_type=="Manga"):
        cool_japan_type="manga, monochrome, white and black manga"
    elif(cool_japan_type=="Game"):
        cool_japan_type="game"
    else:
        cool_japan_type="anime"
        
    prompt=str(prompt_ui)
    neg_prompt=str(neg_prompt_ui)
    prompt=prompt.lower()
    neg_prompt=neg_prompt.lower()
    if(prompt=="" and neg_prompt==""):
        prompt=f"{cool_japan_type}, a portrait of a girl, 4k, detailed"
        neg_prompt=f"(((deformed))), blurry, ((((bad anatomy)))), {neg_prompt}, bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 2d, 3d, cg, text"

    splited_prompt=prompt.replace(","," ").replace("_"," ").split(" ")
    splited_prompt=["a person" if p=="solo" else p for p in splited_prompt]
    splited_prompt=["girl" if p=="1girl" else p for p in splited_prompt]
    splited_prompt=["a couple of girls" if p=="2girls" else p for p in splited_prompt]
    splited_prompt=["a couple of boys" if p=="2boys" else p for p in splited_prompt]
    human_words=["girl","maid","maids","female","woman","girls","a couple of girls","women","boy","boys","a couple of boys","male","man","men","guy","guys"]
    for word in human_words:
        if( word in splited_prompt):
            prompt=f"{cool_japan_type}, {prompt}, 4k, detailed"
            neg_prompt=f"(((deformed))), blurry, ((((bad anatomy)))), {neg_prompt}, bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 2d, 3d, cg, text"

    animal_words=["cat","dog","bird"]
    for word in animal_words:
        if( word in splited_prompt):
            prompt=f"{cool_japan_type}, a {word}, 4k, detailed"
            neg_prompt=f"(((deformed))), blurry, ((((bad anatomy)))), {neg_prompt}, bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 2d, 3d, cg, text"

    background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo", "kyoto", "nara", "shibuya", "shinjuku"]
    for word in background_words:
        if( word in splited_prompt):
            prompt=f"{cool_japan_type}, shinkai makoto, {word}, 4k, 8k, highly detailed"
            neg_prompt=f"(((deformed))), {neg_prompt}, girl, boy, photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text"

    return prompt,neg_prompt
    
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
    result = pipe(
      prompt,
      negative_prompt = neg_prompt,
      num_inference_steps = int(steps),
      guidance_scale = guidance,
      width = width,
      height = height,
      generator = generator)
    
    return result.images[0]

def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe_i2i(
        prompt,
        negative_prompt = neg_prompt,
        init_image = img,
        num_inference_steps = int(steps),
        strength = strength,
        guidance_scale = guidance,
        #width = width,
        #height = height,
        generator = generator)
        
    return result.images[0]

css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="main-div">
              <div>
                <h1>Cool Japan Diffusion 2.1.1 Beta</h1>
              </div>
              <p>
               Demo for <a href="https://huggingface.co/aipicasso/cool-japan-diffusion-2-1-1-beta">Cool Japan Diffusion 2.1.1 Beta</a> Stable Diffusion model.<br>
              </p>
              <p>
              sample prompt1 : girl, kimono
              </p>
              <p>
              sample prompt2 : boy, school uniform
              </p>
              <p>
              <a href="https://alfredplpl.hatenablog.com/entry/2023/01/11/182146">日本語の取扱説明書</a>.
              </p>
              Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU 🥶</b>. For faster inference it is recommended to <b>upgrade to GPU in <a href='https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0/settings'>Settings</a></b>"}
            </div>
        """
    )
    with gr.Row():
        
        with gr.Column(scale=55):
          with gr.Group():
              with gr.Row():
                cool_japan_type=gr.Radio(["Anime", "Manga", "Game"])
                cool_japan_type.show_label=False
                cool_japan_type.value="Anime"
                
              with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]").style(container=False)
                generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))

              image_out = gr.Image(height=768,width=576)
          error_output = gr.Markdown()

        with gr.Column(scale=45):
          with gr.Tab("Options"):
            with gr.Group():
              neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
              disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.")
              with gr.Row():
                image_size=gr.Radio(["Portrait","Landscape","Square"])
                image_size.show_label=False
                image_size.value="Portrait"
                
              with gr.Row():
                guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
                steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=75, step=1)

              seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)

          with gr.Tab("Image to image"):
              with gr.Group():
                image = gr.Image(label="Image", height=256, tool="editor", type="pil")
                strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
                  
    inputs = [prompt, guidance, steps, image_size, seed, image, strength, neg_prompt, cool_japan_type, disable_auto_prompt_correction]

    outputs = [image_out, error_output]
    prompt.submit(inference, inputs=inputs, outputs=outputs)
    generate.click(inference, inputs=inputs, outputs=outputs)

    gr.HTML("""
    <div style="border-top: 1px solid #303030;">
      <br>
      <p>This space was created using <a href="https://huggingface.co/spaces/anzorq/sd-space-creator">SD Space Creator</a>.</p>
    </div>
    """)

demo.queue(concurrency_count=1)
demo.launch()