|
|
|
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, EulerAncestralDiscreteScheduler |
|
from transformers import CLIPFeatureExtractor |
|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
|
|
model_id = 'aipicasso/cool-japan-diffusion-2-1-1-beta' |
|
|
|
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
feature_extractor = CLIPFeatureExtractor.from_pretrained(model_id) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
scheduler=scheduler) |
|
|
|
pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
scheduler=scheduler, |
|
requires_safety_checker=False, |
|
safety_checker=None, |
|
feature_extractor=feature_extractor |
|
) |
|
|
|
if torch.cuda.is_available(): |
|
pipe = pipe.to("cuda") |
|
pipe_i2i = pipe_i2i.to("cuda") |
|
|
|
def error_str(error, title="Error"): |
|
return f"""#### {title} |
|
{error}""" if error else "" |
|
|
|
|
|
def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", disable_auto_prompt_correction=False): |
|
|
|
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None |
|
|
|
try: |
|
if img is not None: |
|
return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator, disable_auto_prompt_correction), None |
|
else: |
|
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator, disable_auto_prompt_correction), None |
|
except Exception as e: |
|
return None, error_str(e) |
|
def auto_prompt_correction(prompt_ui,neg_prompt_ui): |
|
|
|
prompt=str(prompt_ui) |
|
neg_prompt=str(neg_prompt_ui) |
|
prompt=prompt.lower() |
|
neg_prompt=neg_prompt.lower() |
|
if(prompt=="" and neg_prompt==""): |
|
prompt="anime, a portrait of a girl, 4k, detailed" |
|
neg_prompt=" (((deformed))), blurry, ((((bad anatomy)))), bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra_limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, ((mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 2d, 3d, cg, text" |
|
|
|
splited_prompt=prompt.replace(","," ").replace("_"," ").split(" ") |
|
splited_prompt=["girl" if p=="1girl" or p=="solo" else p for p in splited_prompt] |
|
splited_prompt=["boy" if p=="1boy" else p for p in splited_prompt] |
|
human_words=["girl","maid","female","woman","boy","male","man","guy"] |
|
for word in human_words: |
|
if( word in splited_prompt): |
|
prompt=f"anime, {prompt}, 4k, detailed" |
|
neg_prompt=" (((deformed))), blurry, ((((bad anatomy)))), bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra_limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, ((mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 2d, 3d, cg, text" |
|
|
|
animal_words=["cat","dog","bird"] |
|
for word in animal_words: |
|
if( word in splited_prompt): |
|
prompt=f"anime, a {word}, 4k, detailed" |
|
neg_prompt=" (((deformed))), blurry, ((((bad anatomy)))), bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra_limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, ((mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 2d, 3d, cg, text" |
|
|
|
background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo"] |
|
for word in background_words: |
|
if( word in splited_prompt): |
|
prompt=f"anime, shinkai makoto, {word}, 4k, 8k, highly detailed" |
|
neg_prompt=" (((deformed))), photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text" |
|
|
|
return prompt,neg_prompt |
|
|
|
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator,disable_auto_prompt_correction): |
|
if(not disable_auto_prompt_correction): |
|
prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt) |
|
|
|
result = pipe( |
|
prompt, |
|
negative_prompt = neg_prompt, |
|
num_inference_steps = int(steps), |
|
guidance_scale = guidance, |
|
width = width, |
|
height = height, |
|
generator = generator) |
|
|
|
return result.images[0] |
|
|
|
def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator,disable_auto_prompt_correction): |
|
if(not disable_auto_prompt_correction): |
|
prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt) |
|
|
|
ratio = min(height / img.height, width / img.width) |
|
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) |
|
result = pipe_i2i( |
|
prompt, |
|
negative_prompt = neg_prompt, |
|
init_image = img, |
|
num_inference_steps = int(steps), |
|
strength = strength, |
|
guidance_scale = guidance, |
|
|
|
|
|
generator = generator) |
|
|
|
return result.images[0] |
|
|
|
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} |
|
""" |
|
with gr.Blocks(css=css) as demo: |
|
gr.HTML( |
|
f""" |
|
<div class="main-div"> |
|
<div> |
|
<h1>Cool Japan Diffusion 2.1.1 Beta</h1> |
|
</div> |
|
<p> |
|
Demo for <a href="https://huggingface.co/aipicasso/cool-japan-diffusion-2-1-0">Cool Japan Diffusion 2 1 0</a> Stable Diffusion model.<br> |
|
{"Add the following tokens to your prompts for the model to work properly: <b>prefix</b>" if prefix else ""} |
|
</p> |
|
<p> |
|
sample prompt1 : girl |
|
</p> |
|
<p> |
|
sample prompt2 : boy |
|
</p> |
|
<p> |
|
<a href="https://alfredplpl.hatenablog.com/entry/2022/12/30/102636">日本語の取扱説明書</a>. |
|
</p> |
|
Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU 🥶</b>. For faster inference it is recommended to <b>upgrade to GPU in <a href='https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0/settings'>Settings</a></b>"} after duplicating the space<br><br> |
|
<a style="display:inline-block" href="https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> |
|
</div> |
|
""" |
|
) |
|
with gr.Row(): |
|
|
|
with gr.Column(scale=55): |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False) |
|
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) |
|
|
|
image_out = gr.Image(height=512) |
|
error_output = gr.Markdown() |
|
|
|
with gr.Column(scale=45): |
|
with gr.Tab("Options"): |
|
with gr.Group(): |
|
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") |
|
disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.") |
|
|
|
with gr.Row(): |
|
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) |
|
steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=75, step=1) |
|
|
|
with gr.Row(): |
|
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) |
|
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) |
|
|
|
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) |
|
|
|
with gr.Tab("Image to image"): |
|
with gr.Group(): |
|
image = gr.Image(label="Image", height=256, tool="editor", type="pil") |
|
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) |
|
|
|
inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, disable_auto_prompt_correction] |
|
|
|
outputs = [image_out, error_output] |
|
prompt.submit(inference, inputs=inputs, outputs=outputs) |
|
generate.click(inference, inputs=inputs, outputs=outputs) |
|
|
|
gr.HTML(""" |
|
<div style="border-top: 1px solid #303030;"> |
|
<br> |
|
<p>This space was created using <a href="https://huggingface.co/spaces/anzorq/sd-space-creator">SD Space Creator</a>.</p> |
|
</div> |
|
""") |
|
|
|
demo.queue(concurrency_count=1) |
|
demo.launch() |
|
|