# Thank AK. https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0/blob/main/app.py from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, EulerAncestralDiscreteScheduler from transformers import CLIPFeatureExtractor import gradio as gr import torch from PIL import Image model_id = 'aipicasso/cool-japan-diffusion-2-1-1' scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") feature_extractor = CLIPFeatureExtractor.from_pretrained(model_id) pipe = StableDiffusionPipeline.from_pretrained( model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, scheduler=scheduler) pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained( model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, scheduler=scheduler, requires_safety_checker=False, safety_checker=None, feature_extractor=feature_extractor ) if torch.cuda.is_available(): pipe = pipe.to("cuda") pipe_i2i = pipe_i2i.to("cuda") def error_str(error, title="Error"): return f"""#### {title} {error}""" if error else "" def inference(prompt, guidance, steps, image_size="Square", seed=0, img=None, strength=0.5, neg_prompt="", cool_japan_type="Anime", disable_auto_prompt_correction=False): generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None if(not disable_auto_prompt_correction): prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt,cool_japan_type) if(image_size=="Portrait"): height=768 width=576 elif(image_size=="Landscape"): height=576 width=768 else: height=512 width=512 print(prompt,neg_prompt) try: if img is not None: return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None else: return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None except Exception as e: return None, error_str(e) def auto_prompt_correction(prompt_ui,neg_prompt_ui,cool_japan_type_ui): # auto prompt correction cool_japan_type=str(cool_japan_type_ui) if(cool_japan_type=="Manga"): cool_japan_type="manga, monochrome, white and black manga" elif(cool_japan_type=="Game"): cool_japan_type="game" else: cool_japan_type="anime" prompt=str(prompt_ui) neg_prompt=str(neg_prompt_ui) prompt=prompt.lower() neg_prompt=neg_prompt.lower() if(prompt=="" and neg_prompt==""): prompt=f"{cool_japan_type}, masterpiece, a portrait of a good girl, good pupil, 4k, detailed" neg_prompt=f"(((deformed))), blurry, ((((bad anatomy)))), bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 3d, cg, text" return prompt, neg_prompt splited_prompt=prompt.replace(","," ").replace("_"," ").split(" ") splited_prompt=["a person" if p=="solo" else p for p in splited_prompt] splited_prompt=["girl" if p=="1girl" else p for p in splited_prompt] splited_prompt=["a couple of girls" if p=="2girls" else p for p in splited_prompt] splited_prompt=["a couple of boys" if p=="2boys" else p for p in splited_prompt] human_words=["girl","maid","maids","female","woman","girls","a couple of girls","women","boy","boys","a couple of boys","male","man","men","guy","guys"] for word in human_words: if( word in splited_prompt): prompt=f"{cool_japan_type}, masterpiece, {prompt}, good pupil, 4k, detailed" neg_prompt=f"(((deformed))), blurry, ((((bad anatomy)))), {neg_prompt}, bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 3d, cg, text" animal_words=["cat","dog","bird"] for word in animal_words: if( word in splited_prompt): prompt=f"{cool_japan_type}, a {word}, 4k, detailed" neg_prompt=f"(((deformed))), blurry, ((((bad anatomy)))), {neg_prompt}, bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 3d, cg, text" background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo", "kyoto", "nara", "shibuya", "shinjuku"] for word in background_words: if( word in splited_prompt): prompt=f"{cool_japan_type}, shinkai makoto, {word}, 4k, 8k, highly detailed" neg_prompt=f"(((deformed))), {neg_prompt}, girl, boy, photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text" return prompt,neg_prompt def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator): result = pipe( prompt, negative_prompt = neg_prompt, num_inference_steps = int(steps), guidance_scale = guidance, width = width, height = height, generator = generator) return result.images[0] def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator): ratio = min(height / img.height, width / img.width) img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) result = pipe_i2i( prompt, negative_prompt = neg_prompt, init_image = img, num_inference_steps = int(steps), strength = strength, guidance_scale = guidance, #width = width, #height = height, generator = generator) return result.images[0] css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} """ with gr.Blocks(css=css) as demo: gr.HTML( f"""

Cool Japan Diffusion 2.1.1

Demo for Cool Japan Diffusion 2.1.1 Stable Diffusion model.

sample prompt1 : girl, kimono

sample prompt2 : boy, school uniform

日本語の取扱説明書.

Running on {"GPU 🔥" if torch.cuda.is_available() else f"CPU 🥶. For faster inference it is recommended to upgrade to GPU in Settings"}
""" ) with gr.Row(): with gr.Column(scale=55): with gr.Group(): with gr.Row(): cool_japan_type=gr.Radio(["Anime", "Manga", "Game"]) cool_japan_type.show_label=False cool_japan_type.value="Anime" with gr.Row(): prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]").style(container=False) generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) image_out = gr.Image(height=768,width=576) error_output = gr.Markdown() with gr.Column(scale=45): with gr.Tab("Options"): with gr.Group(): neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.") with gr.Row(): image_size=gr.Radio(["Portrait","Landscape","Square"]) image_size.show_label=False image_size.value="Portrait" with gr.Row(): guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=75, step=1) seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) with gr.Tab("Image to image"): with gr.Group(): image = gr.Image(label="Image", height=256, tool="editor", type="pil") strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) inputs = [prompt, guidance, steps, image_size, seed, image, strength, neg_prompt, cool_japan_type, disable_auto_prompt_correction] outputs = [image_out, error_output] prompt.submit(inference, inputs=inputs, outputs=outputs) generate.click(inference, inputs=inputs, outputs=outputs) gr.HTML("""

This space was created using SD Space Creator.

""") demo.queue(concurrency_count=1) demo.launch()