# Thank AK. https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0/blob/main/app.py
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, EulerAncestralDiscreteScheduler,StableDiffusionLatentUpscalePipeline
from transformers import CLIPImageProcessor
import gradio as gr
import torch
from PIL import Image
import random
model_id = 'aipicasso/cool-japan-diffusion-2-1-2'
scheduler = EulerAncestralDiscreteScheduler(prediction_type="v_prediction") # .from_pretrained(model_id) # , subfolder="scheduler"
feature_extractor = CLIPImageProcessor() # .from_pretrained(model_id)
pipe = StableDiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler)
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.4, b2=1.6)
# b1: 1.4, b2: 1.6, s1: 0.9, s2: 0.2
pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler,
requires_safety_checker=False,
safety_checker=None,
feature_extractor=feature_extractor
)
pipe_i2i.enable_xformers_memory_efficient_attention()
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained("alfredplpl/x2-latent-upscaler-for-anime", torch_dtype=torch.float16)
upscaler.enable_xformers_memory_efficient_attention()
if torch.cuda.is_available():
pipe = pipe.to("cuda")
pipe_i2i = pipe_i2i.to("cuda")
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def inference(prompt, guidance, steps, image_size="Square", seed=0, img=None, strength=0.5, neg_prompt="", cool_japan_type="Anime", disable_auto_prompt_correction=False):
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt,cool_japan_type,disable_auto_prompt_correction)
if(image_size=="Portrait"):
height=1024
width=768
superreso=False
#pipe.enable_attention_slicing()
elif(image_size=="Landscape"):
height=768
width=1024
superreso=False
#pipe.enable_attention_slicing()
elif(image_size=="Highreso."):
height=1024
width=1024
superreso=False
#pipe.enable_attention_slicing()
elif(image_size=="Superreso."):
height=1024
width=1024
superreso=True
#pipe.enable_attention_slicing()
else:
height=768
width=768
superreso=False
#pipe.enable_attention_slicing()
print(prompt,neg_prompt)
try:
if img is not None:
return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator,superreso), None
else:
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator,superreso), None
except Exception as e:
return None, error_str(e)
def auto_prompt_correction(prompt_ui,neg_prompt_ui,cool_japan_type_ui,disable_auto_prompt_correction):
# auto prompt correction
cool_japan_type=str(cool_japan_type_ui)
if(cool_japan_type=="Manga"):
cool_japan_type="manga, monochrome, white and black manga"
elif(cool_japan_type=="Game"):
cool_japan_type="game"
else:
cool_japan_type="anime"
prompt=str(prompt_ui)
neg_prompt=str(neg_prompt_ui)
prompt=prompt.lower()
neg_prompt=neg_prompt.lower()
if(disable_auto_prompt_correction):
prompt=f"{cool_japan_type}, {prompt}"
return prompt, neg_prompt
if(prompt=="" and neg_prompt==""):
#prefix=["masterpiece","evangelion, mika pikazo", "konosuba, mika pikazo","steins; gate, ilya kuvshinov",
# "ghibli, shinkai makoto", "evangelion, madoka magica"]
#suffix=["","ayanami rei, asuka langrey", "megumin, aqua from konosuba","mayuri shiina from steins gate, kurisu makise steins gate anime",
# "hakurei reimu","kirisame marisa", "kaname madoka, megumin"]
#prefix_index=random.randrange(len(prefix))
#suffix_index=random.randrange(len(suffix))
#prompt=f"{cool_japan_type}, {prefix[prefix_index]}, portrait, a good girl, {suffix[suffix_index]}, good pupil, 4k, detailed"
prompt=f"{cool_japan_type}, masterpiece, upper body, a girl, good pupil, 4k, detailed"
neg_prompt=f"(((deformed))), blurry, ((((bad anatomy)))), bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 3d, cg, text"
return prompt, neg_prompt
splited_prompt=prompt.replace(","," ").replace("_"," ").split(" ")
splited_prompt=["a person" if p=="solo" else p for p in splited_prompt]
splited_prompt=["girl" if p=="1girl" else p for p in splited_prompt]
splited_prompt=["a couple of girls" if p=="2girls" else p for p in splited_prompt]
splited_prompt=["a couple of boys" if p=="2boys" else p for p in splited_prompt]
human_words=["girl","maid","maids","female","woman","girls","a couple of girls","women","boy","boys","a couple of boys","male","man","men","guy","guys"]
for word in human_words:
if( word in splited_prompt):
prompt=f"{cool_japan_type}, masterpiece, {prompt}, good pupil, 4k, detailed"
neg_prompt=f"(((deformed))), blurry, ((((bad anatomy)))), {neg_prompt}, bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 3d, cg, text"
animal_words=["cat","dog","bird","horse","pigeon"]
for word in animal_words:
if( word in splited_prompt):
prompt=f"{cool_japan_type}, a {word}, 4k, detailed"
neg_prompt=f"(((deformed))), blurry, ((((bad anatomy)))), {neg_prompt}, bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 3d, cg, text"
background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo", "kyoto", "nara", "shibuya", "shinjuku"]
for word in background_words:
if( word in splited_prompt):
prompt=f"{cool_japan_type}, shinkai makoto, {word}, 4k, 8k, highly detailed"
neg_prompt=f"(((deformed))), {neg_prompt}, girl, boy, photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text"
return prompt,neg_prompt
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator,superreso=False):
global pipe, upscaler
if(superreso):
low_res_latents = pipe(
prompt,
negative_prompt = neg_prompt,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
output_type="latent",
generator = generator).images
pipe=pipe.to("cpu")
upscaler=upscaler.to("cuda")
result = upscaler(
prompt=prompt,
negative_prompt = neg_prompt,
image=low_res_latents,
num_inference_steps=20,
guidance_scale=0,
generator=generator,
)
pipe=pipe.to("cuda")
upscaler=upscaler.to("cpu")
else:
result = pipe(
prompt,
negative_prompt = neg_prompt,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return result.images[0]
def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator,superreso=False):
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
if(superreso):
low_res_latents = pipe_i2i(
prompt,
negative_prompt = neg_prompt,
image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
#width = width,
#height = height,
output_type="latent",
generator = generator).images
pipe=pipe.to("cpu")
upscaler=upscaler.to("cuda")
result = upscaler(
prompt=prompt,
negative_prompt = neg_prompt,
image=low_res_latents,
num_inference_steps=20,
guidance_scale=0,
generator=generator,
)
pipe=pipe.to("cuda")
upscaler=upscaler.to("cpu")
else:
result = pipe_i2i(
prompt,
negative_prompt = neg_prompt,
image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
#width = width,
#height = height,
generator = generator)
return result.images[0]
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
Cool Japan Diffusion 2.1.2
Demo for Cool Japan Diffusion 2.1.2 .
sample : Click "Generate" button without any prompts.
sample prompt1 : girl, kimono
sample prompt2 : boy, school uniform
Running on {"
GPU 🔥" if torch.cuda.is_available() else f"
CPU 🥶. For faster inference it is recommended to
upgrade to GPU in Settings"}
to say goodbye from waiting for the generating.
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
with gr.Row():
cool_japan_type=gr.Radio(["Anime", "Manga", "Game"])
cool_japan_type.show_label=False
cool_japan_type.value="Anime"
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]") # .style(container=False)
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
image_out = gr.Image(height=768,width=768)
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.")
with gr.Row():
image_size=gr.Radio(["Portrait","Landscape","Square","Highreso.","Superreso."])
image_size.show_label=False
image_size.value="Square"
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=75, step=1)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
with gr.Tab("Image to image"):
with gr.Group():
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
inputs = [prompt, guidance, steps, image_size, seed, image, strength, neg_prompt, cool_japan_type, disable_auto_prompt_correction]
outputs = [image_out, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs,api_name="generate")
demo.queue(concurrency_count=1)
demo.launch()