File size: 7,037 Bytes
65fe463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import numpy as np
from fairseq import utils
from fairseq.data import (
ConcatSentencesDataset,
Dictionary,
IdDataset,
NestedDictionaryDataset,
NumelDataset,
NumSamplesDataset,
PrependTokenDataset,
RawLabelDataset,
RightPadDataset,
SortDataset,
TruncateDataset,
data_utils,
)
from fairseq.data.shorten_dataset import maybe_shorten_dataset
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("sentence_ranking")
class SentenceRankingTask(LegacyFairseqTask):
"""
Ranking task on multiple sentences.
Args:
dictionary (Dictionary): the dictionary for the input of the task
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument("data", metavar="FILE", help="file prefix for data")
parser.add_argument(
"--num-classes", type=int, help="number of sentences to be ranked"
)
parser.add_argument(
"--init-token",
type=int,
help="add token at the beginning of each batch item",
)
parser.add_argument(
"--separator-token", type=int, help="add separator token between inputs"
)
parser.add_argument("--no-shuffle", action="store_true")
parser.add_argument(
"--shorten-method",
default="none",
choices=["none", "truncate", "random_crop"],
help="if not none, shorten sequences that exceed --tokens-per-sample",
)
parser.add_argument(
"--shorten-data-split-list",
default="",
help="comma-separated list of dataset splits to apply shortening to, "
'e.g., "train,valid" (default: all dataset splits)',
)
parser.add_argument(
"--max-option-length", type=int, help="max length for each option"
)
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
@classmethod
def load_dictionary(cls, args, filename, source=True):
"""Load the dictionary from the filename
Args:
filename (str): the filename
"""
dictionary = Dictionary.load(filename)
dictionary.add_symbol("<mask>")
return dictionary
@classmethod
def setup_task(cls, args, **kwargs):
assert (
args.criterion == "sentence_ranking"
), "Must set --criterion=sentence_ranking"
# load data dictionary
data_dict = cls.load_dictionary(
args,
os.path.join(args.data, "input0", "dict.txt"),
source=True,
)
logger.info("[input] dictionary: {} types".format(len(data_dict)))
return SentenceRankingTask(args, data_dict)
def load_dataset(self, split, combine=False, **kwargs):
"""Load a given dataset split (e.g., train, valid, test)."""
def get_path(type, split):
return os.path.join(self.args.data, type, split)
def make_dataset(type, dictionary):
split_path = get_path(type, split)
dataset = data_utils.load_indexed_dataset(
split_path,
self.source_dictionary,
self.args.dataset_impl,
combine=combine,
)
return dataset
input0 = make_dataset("input0", self.source_dictionary)
input_options = [
make_dataset("input{idx}".format(idx=idx + 1), self.source_dictionary)
for idx in range(self.args.num_classes)
]
if self.args.separator_token is not None:
input0 = PrependTokenDataset(input0, self.args.separator_token)
src_tokens = []
for input_option in input_options:
if self.args.init_token is not None:
input_option = PrependTokenDataset(input_option, self.args.init_token)
if self.args.max_option_length is not None:
input_option = TruncateDataset(
input_option, self.args.max_option_length
)
src_token = ConcatSentencesDataset(input_option, input0)
src_token = maybe_shorten_dataset(
src_token,
split,
self.args.shorten_data_split_list,
self.args.shorten_method,
self.args.max_positions,
self.args.seed,
)
src_tokens.append(src_token)
with data_utils.numpy_seed(self.args.seed):
shuffle = np.random.permutation(len(src_tokens[0]))
dataset = {
"id": IdDataset(),
"nsentences": NumSamplesDataset(),
"ntokens": NumelDataset(src_tokens[0], reduce=True),
}
for src_token_idx in range(len(src_tokens)):
dataset.update(
{
"net_input{idx}".format(idx=src_token_idx + 1): {
"src_tokens": RightPadDataset(
src_tokens[src_token_idx],
pad_idx=self.source_dictionary.pad(),
),
"src_lengths": NumelDataset(
src_tokens[src_token_idx], reduce=False
),
}
}
)
label_path = "{}.label".format(get_path("label", split))
if os.path.exists(label_path):
with open(label_path) as h:
dataset.update(
target=RawLabelDataset([int(x.strip()) for x in h.readlines()])
)
nested_dataset = NestedDictionaryDataset(
dataset,
sizes=[np.maximum.reduce([src_token.sizes for src_token in src_tokens])],
)
if self.args.no_shuffle:
dataset = nested_dataset
else:
dataset = SortDataset(
nested_dataset,
# shuffle
sort_order=[shuffle],
)
logger.info("Loaded {0} with #samples: {1}".format(split, len(dataset)))
self.datasets[split] = dataset
return self.datasets[split]
def build_model(self, args, from_checkpoint=False):
from fairseq import models
model = models.build_model(args, self, from_checkpoint)
model.register_classification_head(
getattr(args, "ranking_head_name", "sentence_classification_head"),
num_classes=1,
)
return model
def max_positions(self):
return self.args.max_positions
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
|