|
|
|
|
|
|
|
|
|
|
|
import itertools |
|
import json |
|
import logging |
|
import math |
|
import os |
|
from collections import OrderedDict, defaultdict |
|
from argparse import ArgumentError |
|
|
|
from fairseq import utils |
|
from fairseq.data import ( |
|
AppendTokenDataset, |
|
ConcatDataset, |
|
Dictionary, |
|
LanguagePairDataset, |
|
PrependTokenDataset, |
|
SampledMultiDataset, |
|
SampledMultiEpochDataset, |
|
StripTokenDataset, |
|
TransformEosLangPairDataset, |
|
TruncateDataset, |
|
data_utils, |
|
indexed_dataset, |
|
) |
|
from fairseq.data.multilingual.multilingual_utils import ( |
|
EncoderLangtok, |
|
LangTokSpec, |
|
LangTokStyle, |
|
augment_dictionary, |
|
get_lang_tok, |
|
) |
|
from fairseq.data.multilingual.sampled_multi_dataset import CollateFormat |
|
from fairseq.file_io import PathManager |
|
from fairseq.utils import FileContentsAction, csv_str_list, eval_str_dict |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
SRC_DICT_NAME = "src" |
|
TGT_DICT_NAME = "tgt" |
|
|
|
|
|
def _lang_id(dic: Dictionary, lang: str): |
|
"""Return language ID index.""" |
|
idx = dic.index(lang) |
|
assert idx != dic.unk_index, "cannot find language ID for lang {}".format(lang) |
|
return idx |
|
|
|
|
|
def load_sampling_weights(from_file): |
|
with open(from_file) as f: |
|
weights = json.load(f) |
|
return weights |
|
|
|
|
|
class MultilingualDatasetManager(object): |
|
def __init__(self, args, lang_pairs, langs, dicts, sampling_method): |
|
super().__init__() |
|
self.args = args |
|
self.seed = args.seed |
|
self.lang_pairs = lang_pairs |
|
self.extra_lang_pairs = ( |
|
list({p for _, v in args.extra_lang_pairs.items() for p in v.split(",")}) |
|
if args.extra_lang_pairs |
|
else [] |
|
) |
|
self.src_langs = { |
|
p.split("-")[0] for p in args.lang_pairs + self.extra_lang_pairs |
|
} |
|
self.tgt_langs = { |
|
p.split("-")[1] for p in args.lang_pairs + self.extra_lang_pairs |
|
} |
|
self.langs = langs |
|
self.dicts = dicts |
|
self.lang_dict = self.create_lang_dictionary(self.langs) |
|
self.sampling_method = sampling_method |
|
self.sampling_scheduler = None |
|
self._has_sharded_data = False |
|
self._num_shards_dict = {} |
|
self._training_data_sizes = defaultdict(lambda: {}) |
|
|
|
@classmethod |
|
def setup_data_manager(cls, args, lang_pairs, langs, dicts, sampling_method): |
|
return MultilingualDatasetManager( |
|
args, lang_pairs, langs, dicts, sampling_method |
|
) |
|
|
|
@staticmethod |
|
def add_args(parser): |
|
parser.add_argument( |
|
"data", |
|
help="colon separated path to data directories list, \ |
|
will be iterated upon during epochs in round-robin manner", |
|
action=FileContentsAction, |
|
) |
|
parser.add_argument( |
|
"--langs", |
|
default=None, |
|
type=csv_str_list, |
|
help="a list of languages comma sperated languages which can appear in lang-pairs; " |
|
"note that the ordering determines language token IDs", |
|
) |
|
parser.add_argument( |
|
"--lang-dict", |
|
default=None, |
|
type=str, |
|
help="an external file which contains a list of " |
|
"languages which can appear in lang-pairs; " |
|
"note that the ordering determines language token IDs; " |
|
"--langs and --lang-dict are two exclusive options", |
|
) |
|
parser.add_argument( |
|
"--source-dict", |
|
default=None, |
|
type=str, |
|
help="path to source dictionary; if specified it will override per language dictionary loading", |
|
) |
|
parser.add_argument( |
|
"--target-dict", |
|
default=None, |
|
type=str, |
|
help="path to target dictionary; if specified it will override per language dictionary loading", |
|
) |
|
parser.add_argument( |
|
"--lang-tok-style", |
|
default=LangTokStyle.multilingual.value, |
|
type=str, |
|
choices=[LangTokStyle.multilingual.value, LangTokStyle.mbart.value], |
|
help="language token styles", |
|
) |
|
|
|
parser.add_argument( |
|
"--load-alignments", |
|
action="store_true", |
|
help="load the binarized alignments", |
|
) |
|
parser.add_argument( |
|
"--left-pad-source", |
|
default="True", |
|
type=str, |
|
metavar="BOOL", |
|
help="pad the source on the left", |
|
) |
|
parser.add_argument( |
|
"--left-pad-target", |
|
default="False", |
|
type=str, |
|
metavar="BOOL", |
|
help="pad the target on the left", |
|
) |
|
try: |
|
parser.add_argument( |
|
"--max-source-positions", |
|
default=1024, |
|
type=int, |
|
metavar="N", |
|
help="max number of tokens in the source sequence", |
|
) |
|
parser.add_argument( |
|
"--max-target-positions", |
|
default=1024, |
|
type=int, |
|
metavar="N", |
|
help="max number of tokens in the target sequence", |
|
) |
|
except ArgumentError: |
|
|
|
pass |
|
parser.add_argument( |
|
"--upsample-primary", |
|
default=1, |
|
type=int, |
|
help="amount to upsample primary dataset", |
|
) |
|
parser.add_argument( |
|
"--truncate-source", |
|
action="store_true", |
|
default=False, |
|
help="truncate source to max-source-positions", |
|
) |
|
parser.add_argument( |
|
"--encoder-langtok", |
|
default=None, |
|
type=str, |
|
choices=[EncoderLangtok.src.value, EncoderLangtok.tgt.value], |
|
metavar="SRCTGT", |
|
help="prepend to the beginning of source sentence the source or target " |
|
"language token. (src/tgt)", |
|
) |
|
parser.add_argument( |
|
"--decoder-langtok", |
|
action="store_true", |
|
help="prepend to the beginning of target sentence the target language token", |
|
) |
|
parser.add_argument( |
|
"--lang-tok-replacing-bos-eos", action="store_true", default=False |
|
) |
|
parser.add_argument( |
|
"--enable-lang-ids", |
|
default=False, |
|
action="store_true", |
|
help="whether to include language IDs in samples", |
|
) |
|
parser.add_argument( |
|
"--enable-reservsed-directions-shared-datasets", |
|
default=False, |
|
action="store_true", |
|
help="whether to allow datasets be used in reversed directions", |
|
) |
|
|
|
parser.add_argument( |
|
"--extra-data", |
|
help='a dictionary of data name to this path, \ |
|
e.g. {"mined", path_to_mined_data, "denoised": path_to_denoised_data}', |
|
type=lambda uf: eval_str_dict(uf, type=str), |
|
default=None, |
|
) |
|
parser.add_argument( |
|
"--extra-lang-pairs", |
|
help='a dictionary of data name to the language pairs they serve, \ |
|
e.g. {"mined": comma-separated-lang-pairs, "denoised": comma-separated-lang-pairs}', |
|
type=lambda uf: eval_str_dict(uf, type=str), |
|
default=None, |
|
) |
|
parser.add_argument( |
|
"--fixed-dictionary", |
|
help="Fixed dictionary to use with model path", |
|
default=None, |
|
type=str, |
|
) |
|
parser.add_argument( |
|
"--langtoks-specs", |
|
help='a list of comma separated data types that a set of language tokens to be specialized for, \ |
|
e.g. "main,dae,mined". There will be a set of language tokens added to the vocab to \ |
|
distinguish languages in different training data types. If not specified, default language \ |
|
tokens per languages will be added', |
|
default=LangTokSpec.main.value, |
|
type=csv_str_list, |
|
) |
|
parser.add_argument( |
|
"--langtoks", |
|
help='a dictionary of how to add language tokens, \ |
|
e.g. {"mined": (None, "tgt"), "mono_dae": ("src.dae", "tgt"), "main": \ |
|
("src", "tgt")}, or {"mined": ("src.mined", "tgt")}', |
|
default=None, |
|
type=lambda uf: eval_str_dict(uf, type=str), |
|
) |
|
parser.add_argument( |
|
"--sampling-weights-from-file", |
|
help='a file contain a python dictionary of how to sample data sets, \ |
|
e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5, \ |
|
"mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }', |
|
default=None, |
|
type=str, |
|
) |
|
parser.add_argument( |
|
"--sampling-weights", |
|
help='a dictionary of how to sample data sets, \ |
|
e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5, \ |
|
"mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }', |
|
default=None, |
|
type=lambda uf: eval_str_dict(uf, type=str), |
|
) |
|
parser.add_argument( |
|
"--virtual-epoch-size", |
|
default=None, |
|
type=int, |
|
help="virtual epoch size to speed up data loading", |
|
) |
|
parser.add_argument( |
|
"--virtual-data-size", |
|
default=None, |
|
type=int, |
|
help="virtual data size of the whole joint dataset to speed" |
|
"up data loading and have specific dynamic sampling strategy interval", |
|
) |
|
|
|
@classmethod |
|
def load_langs(cls, args, **kwargs): |
|
if args.lang_dict and args.langs: |
|
raise ValueError("--langs and --lang-dict can not both be specified") |
|
if args.lang_dict is None and args.langs is None: |
|
logger.warning( |
|
"External language dictionary is not provided; " |
|
"use lang-pairs to infer the set of supported languages. " |
|
"The language ordering is not stable which might cause " |
|
"misalignment in pretraining and finetuning." |
|
) |
|
|
|
langs = list( |
|
{x for lang_pair in args.lang_pairs for x in lang_pair.split("-")} |
|
) |
|
langs = sorted(langs) |
|
logger.info(f"inferred language list: {langs}") |
|
elif args.lang_dict: |
|
with open( |
|
PathManager.get_local_path(args.lang_dict), "r", encoding="utf-8" |
|
) as f: |
|
langs = [lang.strip() for lang in f.readlines() if lang.strip()] |
|
logger.info( |
|
f"loaded language list from {args.lang_dict} as they are ordered in file" |
|
) |
|
elif args.langs: |
|
langs = args.langs |
|
logger.info( |
|
f"parsed the language list as they are ordered in the option: {langs}" |
|
) |
|
return langs |
|
|
|
def has_sharded_data(self, split): |
|
return self._has_sharded_data and split == getattr( |
|
self.args, "train_subset", None |
|
) |
|
|
|
def _shared_collater(self): |
|
return not (self.args.extra_data and "mono_dae" in self.args.extra_data) and ( |
|
not self.args.lang_tok_replacing_bos_eos |
|
) |
|
|
|
def estimate_global_pass_epoch(self, epoch): |
|
if self.args.virtual_epoch_size is None or self.args.virtual_data_size is None: |
|
return None |
|
|
|
virtual_epochs_per_shard = math.ceil( |
|
self.args.virtual_data_size / self.args.virtual_epoch_size |
|
) |
|
|
|
shard_epoch = (epoch - 1) // virtual_epochs_per_shard + 1 |
|
return shard_epoch |
|
|
|
@classmethod |
|
def prepare(cls, load_dictionary, args, **kargs): |
|
args.left_pad_source = utils.eval_bool(args.left_pad_source) |
|
args.left_pad_target = utils.eval_bool(args.left_pad_target) |
|
|
|
if not hasattr(args, "shuffle_instance"): |
|
args.shuffle_instance = False |
|
if args.langtoks is None: |
|
args.langtoks = {} |
|
if "main" not in args.langtoks: |
|
src_langtok_spec = args.encoder_langtok if args.encoder_langtok else None |
|
tgt_langtok_spec = "tgt" if args.decoder_langtok else None |
|
args.langtoks["main"] = (src_langtok_spec, tgt_langtok_spec) |
|
|
|
def check_langs(langs, pairs): |
|
messages = [] |
|
for src, tgt in pairs: |
|
if src not in langs or tgt not in langs: |
|
messages.append( |
|
f"language pair {src}-{tgt} contains languages " |
|
"that are not in the language dictionary" |
|
) |
|
if len(messages) > 0: |
|
raise ValueError(" ".join(messages) + f"; langs: {langs}") |
|
|
|
if args.lang_pairs is None: |
|
raise ValueError( |
|
"--lang-pairs is required. List all the language pairs in the training objective." |
|
) |
|
if isinstance(args.lang_pairs, str): |
|
args.lang_pairs = args.lang_pairs.split(",") |
|
if args.source_lang is not None or args.target_lang is not None: |
|
training = False |
|
else: |
|
training = True |
|
language_list = cls.load_langs(args, **kargs) |
|
check_langs( |
|
language_list, |
|
( |
|
[p.split("-") for p in args.lang_pairs] |
|
if training |
|
else [(args.source_lang, args.target_lang)] |
|
), |
|
) |
|
|
|
def load_dictionary_and_postproc(path): |
|
d = load_dictionary(path) |
|
augment_dictionary( |
|
dictionary=d, |
|
language_list=language_list, |
|
lang_tok_style=args.lang_tok_style, |
|
langtoks_specs=args.langtoks_specs, |
|
extra_data=args.extra_data, |
|
) |
|
return d |
|
|
|
dicts = cls.load_all_dictionaries( |
|
args, language_list, load_dictionary_and_postproc, training |
|
) |
|
return language_list, dicts, training |
|
|
|
@classmethod |
|
def load_all_dictionaries(cls, args, language_list, load_dictionary, training): |
|
dicts = OrderedDict() |
|
if args.source_dict is not None: |
|
dicts[SRC_DICT_NAME] = load_dictionary(args.source_dict) |
|
if args.target_dict is not None: |
|
dicts[TGT_DICT_NAME] = load_dictionary(args.target_dict) |
|
|
|
if training: |
|
extra_lang_pairs = ( |
|
list( |
|
{p for _, v in args.extra_lang_pairs.items() for p in v.split(",")} |
|
) |
|
if args.extra_lang_pairs |
|
else [] |
|
) |
|
src_langs_to_load_dicts = sorted( |
|
{p.split("-")[0] for p in (args.lang_pairs + extra_lang_pairs)} |
|
) |
|
tgt_langs_to_load_dicts = sorted( |
|
{p.split("-")[1] for p in (args.lang_pairs + extra_lang_pairs)} |
|
) |
|
else: |
|
src_langs_to_load_dicts = [args.source_lang] |
|
tgt_langs_to_load_dicts = [args.target_lang] |
|
|
|
paths = utils.split_paths(args.data) |
|
assert len(paths) > 0 |
|
|
|
def load_dicts(langs_to_load_dicts): |
|
for lang in langs_to_load_dicts: |
|
dicts[lang] = load_dictionary( |
|
os.path.join(paths[0], "dict.{}.txt".format(lang)) |
|
) |
|
if len(dicts) > 0: |
|
dict0 = next(iter(dicts.values())) |
|
assert dicts[lang].pad() == dict0.pad() |
|
assert dicts[lang].eos() == dict0.eos() |
|
assert dicts[lang].unk() == dict0.unk() |
|
logger.info("[{}] dictionary: {} types".format(lang, len(dicts[lang]))) |
|
|
|
if args.fixed_dictionary is not None: |
|
fixed_dict = load_dictionary(args.fixed_dictionary) |
|
dicts = { |
|
lang: fixed_dict |
|
for lang in src_langs_to_load_dicts + tgt_langs_to_load_dicts |
|
} |
|
else: |
|
if args.source_dict is None: |
|
load_dicts(src_langs_to_load_dicts) |
|
if args.target_dict is None: |
|
load_dicts(tgt_langs_to_load_dicts) |
|
return dicts |
|
|
|
def get_source_dictionary(self, lang): |
|
if self.args.source_dict is not None: |
|
return self.dicts[SRC_DICT_NAME] |
|
else: |
|
return self.dicts[lang] |
|
|
|
def get_target_dictionary(self, lang): |
|
if self.args.target_dict is not None: |
|
return self.dicts[TGT_DICT_NAME] |
|
else: |
|
return self.dicts[lang] |
|
|
|
@classmethod |
|
def create_lang_dictionary(cls, langs): |
|
unk = "<unk>" |
|
|
|
lang_dict = Dictionary(pad=unk, eos=unk, unk=unk, bos=unk) |
|
for lang in langs: |
|
lang_dict.add_symbol(lang) |
|
return lang_dict |
|
|
|
@classmethod |
|
def get_langtok_index(cls, lang_tok, dic): |
|
idx = dic.index(lang_tok) |
|
assert ( |
|
idx != dic.unk_index |
|
), "cannot find language token {} in the dictionary".format(lang_tok) |
|
return idx |
|
|
|
def get_encoder_langtok(self, src_lang, tgt_lang, spec=None): |
|
if spec is None: |
|
return None |
|
if spec and spec.startswith("src"): |
|
if src_lang is None: |
|
return None |
|
langtok = get_lang_tok( |
|
lang=src_lang, lang_tok_style=self.args.lang_tok_style, spec=spec |
|
) |
|
else: |
|
if tgt_lang is None: |
|
return None |
|
langtok = get_lang_tok( |
|
lang=tgt_lang, lang_tok_style=self.args.lang_tok_style, spec=spec |
|
) |
|
return self.get_langtok_index( |
|
langtok, |
|
self.get_source_dictionary(src_lang) |
|
if src_lang |
|
else self.get_target_dictionary(tgt_lang), |
|
) |
|
|
|
def get_decoder_langtok(self, tgt_lang, spec=None): |
|
if spec is None: |
|
return None |
|
langtok = get_lang_tok( |
|
lang=tgt_lang, lang_tok_style=self.args.lang_tok_style, spec=spec |
|
) |
|
return self.get_langtok_index(langtok, self.get_target_dictionary(tgt_lang)) |
|
|
|
@classmethod |
|
def load_data(cls, path, vdict, impl): |
|
dataset = data_utils.load_indexed_dataset(path, vdict, impl) |
|
return dataset |
|
|
|
@classmethod |
|
def split_exists(cls, split, src, tgt, lang, data_path, dataset_impl): |
|
filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang)) |
|
return indexed_dataset.dataset_exists(filename, impl=dataset_impl) |
|
|
|
def load_lang_dataset( |
|
self, |
|
data_path, |
|
split, |
|
src, |
|
src_dict, |
|
tgt, |
|
tgt_dict, |
|
combine, |
|
dataset_impl, |
|
upsample_primary, |
|
max_source_positions, |
|
prepend_bos=False, |
|
load_alignments=False, |
|
truncate_source=False, |
|
): |
|
|
|
src_datasets = [] |
|
tgt_datasets = [] |
|
|
|
for k in itertools.count(): |
|
split_k = split + (str(k) if k > 0 else "") |
|
|
|
|
|
if self.split_exists(split_k, src, tgt, src, data_path, dataset_impl): |
|
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt)) |
|
elif self.split_exists(split_k, tgt, src, src, data_path, dataset_impl): |
|
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src)) |
|
else: |
|
if k > 0: |
|
break |
|
else: |
|
logger.error( |
|
f"Dataset not found: {data_path}, {split_k}, {src}, {tgt}" |
|
) |
|
raise FileNotFoundError( |
|
"Dataset not found: {} ({})".format(split, data_path) |
|
) |
|
|
|
src_dataset = self.load_data(prefix + src, src_dict, dataset_impl) |
|
if truncate_source: |
|
src_dataset = AppendTokenDataset( |
|
TruncateDataset( |
|
StripTokenDataset(src_dataset, src_dict.eos()), |
|
max_source_positions - 1, |
|
), |
|
src_dict.eos(), |
|
) |
|
src_datasets.append(src_dataset) |
|
tgt_datasets.append(self.load_data(prefix + tgt, tgt_dict, dataset_impl)) |
|
|
|
logger.info( |
|
"{} {} {}-{} {} examples".format( |
|
data_path, split_k, src, tgt, len(src_datasets[-1]) |
|
) |
|
) |
|
|
|
if not combine: |
|
break |
|
|
|
assert len(src_datasets) == len(tgt_datasets) |
|
|
|
if len(src_datasets) == 1: |
|
src_dataset, tgt_dataset = src_datasets[0], tgt_datasets[0] |
|
else: |
|
sample_ratios = [1] * len(src_datasets) |
|
sample_ratios[0] = upsample_primary |
|
src_dataset = ConcatDataset(src_datasets, sample_ratios) |
|
tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios) |
|
|
|
if prepend_bos: |
|
assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index") |
|
src_dataset = PrependTokenDataset(src_dataset, src_dict.bos()) |
|
tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos()) |
|
|
|
align_dataset = None |
|
if load_alignments: |
|
align_path = os.path.join( |
|
data_path, "{}.align.{}-{}".format(split, src, tgt) |
|
) |
|
if indexed_dataset.dataset_exists(align_path, impl=dataset_impl): |
|
align_dataset = data_utils.load_indexed_dataset( |
|
align_path, None, dataset_impl |
|
) |
|
|
|
return src_dataset, tgt_dataset, align_dataset |
|
|
|
def load_langpair_dataset( |
|
self, |
|
data_path, |
|
split, |
|
src, |
|
src_dict, |
|
tgt, |
|
tgt_dict, |
|
combine, |
|
dataset_impl, |
|
upsample_primary, |
|
left_pad_source, |
|
left_pad_target, |
|
max_source_positions, |
|
max_target_positions, |
|
prepend_bos=False, |
|
load_alignments=False, |
|
truncate_source=False, |
|
src_dataset_transform_func=lambda dataset: dataset, |
|
tgt_dataset_transform_func=lambda dataset: dataset, |
|
src_lang_id=None, |
|
tgt_lang_id=None, |
|
langpairs_sharing_datasets=None, |
|
): |
|
norm_direction = "-".join(sorted([src, tgt])) |
|
if langpairs_sharing_datasets is not None: |
|
src_dataset = langpairs_sharing_datasets.get( |
|
(data_path, split, norm_direction, src), "NotInCache" |
|
) |
|
tgt_dataset = langpairs_sharing_datasets.get( |
|
(data_path, split, norm_direction, tgt), "NotInCache" |
|
) |
|
align_dataset = langpairs_sharing_datasets.get( |
|
(data_path, split, norm_direction, src, tgt), "NotInCache" |
|
) |
|
|
|
|
|
if ( |
|
langpairs_sharing_datasets is None |
|
or src_dataset == "NotInCache" |
|
or tgt_dataset == "NotInCache" |
|
or align_dataset == "NotInCache" |
|
or split != getattr(self.args, "train_subset", None) |
|
): |
|
|
|
|
|
src_dataset, tgt_dataset, align_dataset = self.load_lang_dataset( |
|
data_path, |
|
split, |
|
src, |
|
src_dict, |
|
tgt, |
|
tgt_dict, |
|
combine, |
|
dataset_impl, |
|
upsample_primary, |
|
max_source_positions=max_source_positions, |
|
prepend_bos=prepend_bos, |
|
load_alignments=load_alignments, |
|
truncate_source=truncate_source, |
|
) |
|
src_dataset = src_dataset_transform_func(src_dataset) |
|
tgt_dataset = tgt_dataset_transform_func(tgt_dataset) |
|
if langpairs_sharing_datasets is not None: |
|
langpairs_sharing_datasets[ |
|
(data_path, split, norm_direction, src) |
|
] = src_dataset |
|
langpairs_sharing_datasets[ |
|
(data_path, split, norm_direction, tgt) |
|
] = tgt_dataset |
|
langpairs_sharing_datasets[ |
|
(data_path, split, norm_direction, src, tgt) |
|
] = align_dataset |
|
if align_dataset is None: |
|
|
|
langpairs_sharing_datasets[ |
|
(data_path, split, norm_direction, tgt, src) |
|
] = align_dataset |
|
else: |
|
logger.info( |
|
f"Reusing source and target datasets of [{split}] {tgt}-{src} for reversed direction: " |
|
f"[{split}] {src}-{tgt}: src length={len(src_dataset)}; tgt length={len(tgt_dataset)}" |
|
) |
|
|
|
return LanguagePairDataset( |
|
src_dataset, |
|
src_dataset.sizes, |
|
src_dict, |
|
tgt_dataset, |
|
tgt_dataset.sizes if tgt_dataset is not None else None, |
|
tgt_dict, |
|
left_pad_source=left_pad_source, |
|
left_pad_target=left_pad_target, |
|
align_dataset=align_dataset, |
|
src_lang_id=src_lang_id, |
|
tgt_lang_id=tgt_lang_id, |
|
) |
|
|
|
def src_dataset_tranform_func(self, src_lang, tgt_lang, dataset, spec=None): |
|
if self.args.lang_tok_replacing_bos_eos: |
|
|
|
|
|
return dataset |
|
if spec is None: |
|
return dataset |
|
tok = self.get_encoder_langtok(src_lang, tgt_lang, spec) |
|
if tok: |
|
return PrependTokenDataset(dataset, tok) |
|
return dataset |
|
|
|
def tgt_dataset_tranform_func(self, source_lang, target_lang, dataset, spec=None): |
|
if dataset is None: |
|
|
|
return None |
|
if self.args.lang_tok_replacing_bos_eos: |
|
|
|
|
|
|
|
|
|
return dataset |
|
|
|
if not spec: |
|
return dataset |
|
tok = self.get_decoder_langtok(target_lang, spec) |
|
if tok: |
|
return PrependTokenDataset(dataset, tok) |
|
return dataset |
|
|
|
def alter_dataset_langtok( |
|
self, |
|
lang_pair_dataset, |
|
src_eos=None, |
|
src_lang=None, |
|
tgt_eos=None, |
|
tgt_lang=None, |
|
src_langtok_spec=None, |
|
tgt_langtok_spec=None, |
|
): |
|
if src_langtok_spec is None and tgt_langtok_spec is None: |
|
return lang_pair_dataset |
|
|
|
new_src_eos = None |
|
if ( |
|
src_langtok_spec is not None |
|
and src_eos is not None |
|
and (src_lang is not None or tgt_lang is not None) |
|
): |
|
new_src_eos = self.get_encoder_langtok(src_lang, tgt_lang, src_langtok_spec) |
|
else: |
|
src_eos = None |
|
|
|
new_tgt_bos = None |
|
if tgt_langtok_spec and tgt_eos is not None and tgt_lang is not None: |
|
new_tgt_bos = self.get_decoder_langtok(tgt_lang, tgt_langtok_spec) |
|
else: |
|
tgt_eos = None |
|
|
|
return TransformEosLangPairDataset( |
|
lang_pair_dataset, |
|
src_eos=src_eos, |
|
new_src_eos=new_src_eos, |
|
tgt_bos=tgt_eos, |
|
new_tgt_bos=new_tgt_bos, |
|
) |
|
|
|
def load_a_dataset( |
|
self, |
|
split, |
|
data_path, |
|
src, |
|
src_dict, |
|
tgt, |
|
tgt_dict, |
|
combine, |
|
prepend_bos=False, |
|
langpairs_sharing_datasets=None, |
|
data_category=None, |
|
**extra_kwargs, |
|
): |
|
dataset_impl = self.args.dataset_impl |
|
upsample_primary = self.args.upsample_primary |
|
left_pad_source = self.args.left_pad_source |
|
left_pad_target = self.args.left_pad_target |
|
max_source_positions = self.args.max_source_positions |
|
max_target_positions = self.args.max_target_positions |
|
load_alignments = self.args.load_alignments |
|
truncate_source = self.args.truncate_source |
|
src_dataset_transform_func = self.src_dataset_tranform_func |
|
tgt_dataset_transform_func = self.tgt_dataset_tranform_func |
|
enable_lang_ids = self.args.enable_lang_ids |
|
lang_dictionary = self.lang_dict |
|
src_langtok_spec, tgt_langtok_spec = extra_kwargs["langtok_spec"] |
|
|
|
src_langtok = self.get_encoder_langtok(src, tgt, src_langtok_spec) |
|
tgt_langtok = self.get_decoder_langtok(tgt, tgt_langtok_spec) |
|
logger.info( |
|
f"{data_category}:{src}-{tgt} src_langtok: {src_langtok}; tgt_langtok: {tgt_langtok}" |
|
) |
|
|
|
langpair_ds = self.load_langpair_dataset( |
|
data_path, |
|
split, |
|
src, |
|
src_dict, |
|
tgt, |
|
tgt_dict, |
|
combine, |
|
dataset_impl, |
|
upsample_primary, |
|
left_pad_source, |
|
left_pad_target, |
|
max_source_positions, |
|
max_target_positions, |
|
prepend_bos, |
|
load_alignments, |
|
truncate_source, |
|
src_dataset_transform_func=lambda dataset: src_dataset_transform_func( |
|
src, tgt, dataset, src_langtok_spec |
|
), |
|
tgt_dataset_transform_func=lambda dataset: tgt_dataset_transform_func( |
|
src, tgt, dataset, tgt_langtok_spec |
|
), |
|
src_lang_id=_lang_id(lang_dictionary, src) |
|
if enable_lang_ids and lang_dictionary is not None |
|
else None, |
|
tgt_lang_id=_lang_id(lang_dictionary, tgt) |
|
if enable_lang_ids and lang_dictionary is not None |
|
else None, |
|
langpairs_sharing_datasets=langpairs_sharing_datasets, |
|
) |
|
|
|
if self.args.lang_tok_replacing_bos_eos: |
|
ds = self.alter_dataset_langtok( |
|
langpair_ds, |
|
src_eos=self.get_source_dictionary(src).eos() |
|
if src |
|
else self.get_target_dictionary(tgt).eos(), |
|
src_lang=src, |
|
tgt_eos=self.get_target_dictionary(tgt).eos(), |
|
tgt_lang=tgt, |
|
src_langtok_spec=src_langtok_spec, |
|
tgt_langtok_spec=tgt_langtok_spec, |
|
) |
|
else: |
|
ds = langpair_ds |
|
return ds |
|
|
|
def load_split_langpair_datasets(self, split, data_param_list): |
|
datasets = [] |
|
langpairs_sharing_datasets = ( |
|
{} if self.args.enable_reservsed_directions_shared_datasets else None |
|
) |
|
for param in data_param_list: |
|
ds = self.load_a_dataset( |
|
split=split, |
|
langpairs_sharing_datasets=langpairs_sharing_datasets, |
|
**param, |
|
) |
|
datasets.append(ds) |
|
return datasets |
|
|
|
def get_data_paths_and_lang_pairs(self, split): |
|
datapaths = {"main": self.args.data} |
|
lang_pairs = {"main": self.lang_pairs} |
|
if split == getattr(self.args, "train_subset", None): |
|
|
|
if self.args.extra_data: |
|
extra_datapaths = self.args.extra_data |
|
datapaths.update(extra_datapaths) |
|
if self.args.extra_lang_pairs: |
|
extra_lang_pairs = { |
|
k: v.split(",") for k, v in self.args.extra_lang_pairs.items() |
|
} |
|
lang_pairs.update(extra_lang_pairs) |
|
return datapaths, lang_pairs |
|
|
|
@classmethod |
|
def get_dataset_key(cls, data_category, src, tgt): |
|
return f"{data_category}:{src}-{tgt}" |
|
|
|
@classmethod |
|
def _get_shard_num_dict(cls, split, paths): |
|
shards = defaultdict(int) |
|
for path in paths: |
|
files = PathManager.ls(path) |
|
directions = set() |
|
for f in files: |
|
if f.startswith(split) and f.endswith(".idx"): |
|
|
|
direction = f.split(".")[-3] |
|
directions.add(direction) |
|
for direction in directions: |
|
shards[direction] += 1 |
|
return shards |
|
|
|
def get_split_num_data_shards(self, split): |
|
if split in self._num_shards_dict: |
|
return self._num_shards_dict[split] |
|
num_shards_dict = {} |
|
data_paths, lang_pairs = self.get_data_paths_and_lang_pairs(split) |
|
|
|
for data_category, paths in data_paths.items(): |
|
if data_category not in lang_pairs: |
|
continue |
|
paths = utils.split_paths(paths) |
|
shards_dict = self._get_shard_num_dict(split, paths) |
|
lang_dirs = [ |
|
lang_pair.split("-") for lang_pair in lang_pairs[data_category] |
|
] |
|
lang_dirs = [x if len(x) > 1 else (x[0], x[0]) for x in lang_dirs] |
|
for src, tgt in lang_dirs: |
|
key = self.get_dataset_key(data_category, src, tgt) |
|
if "mono_" in data_category: |
|
|
|
assert src is None or src == tgt, ( |
|
f"error: src={src}, " |
|
f"tgt={tgt} for data_category={data_category}" |
|
) |
|
num_shards_dict[key] = shards_dict[tgt] |
|
else: |
|
if f"{src}-{tgt}" in shards_dict: |
|
num_shards_dict[key] = shards_dict[f"{src}-{tgt}"] |
|
elif f"{tgt}-{src}" in shards_dict: |
|
|
|
num_shards_dict[key] = shards_dict[f"{tgt}-{src}"] |
|
self._num_shards_dict[split] = num_shards_dict |
|
logger.info(f"[{split}] num of shards: {num_shards_dict}") |
|
return num_shards_dict |
|
|
|
@classmethod |
|
def get_shard_id(cls, num_shards, epoch, shard_epoch=None): |
|
shard = epoch if shard_epoch is None else shard_epoch |
|
shard = (shard - 1) % num_shards |
|
return shard |
|
|
|
def get_split_data_path(self, paths, epoch, shard_epoch, num_shards): |
|
path = paths[self.get_shard_id(num_shards, epoch, shard_epoch)] |
|
return path |
|
|
|
def get_split_data_param_list(self, split, epoch, shard_epoch=None): |
|
|
|
param_list = [] |
|
data_paths, lang_pairs = self.get_data_paths_and_lang_pairs(split) |
|
logger.info(f"langtoks settings: {self.args.langtoks}") |
|
split_num_shards_dict = self.get_split_num_data_shards(split) |
|
for data_category, paths in data_paths.items(): |
|
if data_category not in lang_pairs: |
|
continue |
|
paths = utils.split_paths(paths) |
|
assert len(paths) > 0 |
|
if len(paths) > 1: |
|
self._has_sharded_data = True |
|
if split != getattr(self.args, "train_subset", None): |
|
|
|
paths = paths[:1] |
|
|
|
if data_category in self.args.langtoks: |
|
lang_tok_spec = self.args.langtoks[data_category] |
|
else: |
|
|
|
lang_tok_spec = (None, None) |
|
|
|
|
|
lang_dirs = [ |
|
lang_pair.split("-") for lang_pair in lang_pairs[data_category] |
|
] |
|
lang_dirs = [x if len(x) > 1 else (x[0], x[0]) for x in lang_dirs] |
|
for src, tgt in lang_dirs: |
|
assert src is not None or data_category == "mono_dae", ( |
|
f"error: src={src}, " f"tgt={tgt} for data_category={data_category}" |
|
) |
|
|
|
key = self.get_dataset_key(data_category, src, tgt) |
|
data_path = self.get_split_data_path( |
|
paths, epoch, shard_epoch, split_num_shards_dict[key] |
|
) |
|
param_list.append( |
|
{ |
|
"key": key, |
|
"data_path": data_path, |
|
"split": split, |
|
"src": src, |
|
"src_dict": self.get_source_dictionary(src) |
|
if src and data_category != "mono_dae" |
|
else None, |
|
"tgt": tgt, |
|
"tgt_dict": self.get_target_dictionary(tgt), |
|
"data_category": data_category, |
|
"langtok_spec": lang_tok_spec, |
|
} |
|
) |
|
return param_list |
|
|
|
def get_train_dataset_sizes( |
|
self, data_param_list, datasets, epoch, shard_epoch=None |
|
): |
|
num_shards = [ |
|
self.get_split_num_data_shards(param["split"])[param["key"]] |
|
for param in data_param_list |
|
] |
|
data_sizes = [] |
|
for (key, d), num_shard in zip(datasets, num_shards): |
|
my_data_sizes = self._training_data_sizes[key] |
|
shard_ind = self.get_shard_id(num_shard, epoch, shard_epoch) |
|
if shard_ind not in my_data_sizes: |
|
my_data_sizes[shard_ind] = len(d) |
|
known_size = max(my_data_sizes.values()) |
|
data_sizes.append( |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(key, sum(my_data_sizes.get(i, known_size) for i in range(num_shard))) |
|
) |
|
logger.info( |
|
f"estimated total data sizes of all shards used in sampling ratios: {data_sizes}. " |
|
"Note that if the data a shard has not been loaded yet, use the max known data size to approximate" |
|
) |
|
return [s for _, s in data_sizes] |
|
|
|
def get_train_sampling_ratios( |
|
self, data_param_list, datasets, epoch=1, shard_epoch=None |
|
): |
|
data_sizes = self.get_train_dataset_sizes( |
|
data_param_list, datasets, epoch, shard_epoch |
|
) |
|
sampling_func = self.sampling_method.sampling_method_selector() |
|
sample_ratios = sampling_func(data_sizes) if sampling_func is not None else None |
|
return sample_ratios |
|
|
|
def get_sampling_ratios(self, data_param_list, datasets, epoch, shard_epoch=None): |
|
if self.args.sampling_weights_from_file: |
|
weights = load_sampling_weights(self.args.sampling_weights_from_file) |
|
sample_ratios = [weights[k] for k, _ in datasets] |
|
logger.info( |
|
"| ignoring --sampling-weights when loadding sampling weights " |
|
f"from file {self.args.sampling_weights_from_file}" |
|
) |
|
elif self.args.sampling_weights: |
|
sample_ratios = [self.args.sampling_weights[k] for k, _ in datasets] |
|
else: |
|
sample_ratios = self.get_train_sampling_ratios( |
|
data_param_list, datasets, epoch, shard_epoch |
|
) |
|
|
|
if sample_ratios is not None: |
|
logger.info( |
|
"| Upsample ratios: {}".format( |
|
list(zip(map(lambda x: x["key"], data_param_list), sample_ratios)) |
|
) |
|
) |
|
assert len(sample_ratios) == len(datasets) |
|
return sample_ratios |
|
|
|
def load_split_datasets( |
|
self, split, training, epoch=1, combine=False, shard_epoch=None, **kwargs |
|
): |
|
data_param_list = self.get_split_data_param_list( |
|
split, epoch, shard_epoch=shard_epoch |
|
) |
|
langpairs_sharing_datasets = ( |
|
{} if self.args.enable_reservsed_directions_shared_datasets else None |
|
) |
|
datasets = [ |
|
( |
|
param["key"], |
|
self.load_a_dataset( |
|
combine=combine, |
|
langpairs_sharing_datasets=langpairs_sharing_datasets, |
|
**param, |
|
), |
|
) |
|
for param in data_param_list |
|
] |
|
return datasets, data_param_list |
|
|
|
def load_into_concat_dataset(self, split, datasets, data_param_list): |
|
if self.args.lang_tok_replacing_bos_eos: |
|
|
|
return SampledMultiDataset( |
|
OrderedDict(datasets), |
|
sampling_ratios=None, |
|
eval_key=None, |
|
collate_format=CollateFormat.single, |
|
virtual_size=None, |
|
split=split, |
|
) |
|
return ConcatDataset([d for _, d in datasets]) |
|
|
|
def load_sampled_multi_epoch_dataset( |
|
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs |
|
): |
|
datasets, data_param_list = self.load_split_datasets( |
|
split, training, epoch, combine, shard_epoch=shard_epoch, **kwargs |
|
) |
|
if training and split == getattr(self.args, "train_subset", None): |
|
sample_ratios = self.get_sampling_ratios(data_param_list, datasets, epoch) |
|
return SampledMultiEpochDataset( |
|
OrderedDict(datasets), |
|
epoch=epoch, |
|
shard_epoch=shard_epoch, |
|
|
|
sampling_ratios=sample_ratios, |
|
eval_key=None, |
|
collate_format=CollateFormat.single, |
|
virtual_size=self.args.virtual_data_size, |
|
split=split, |
|
virtual_epoch_size=self.args.virtual_epoch_size, |
|
|
|
shared_collater=self._shared_collater(), |
|
) |
|
else: |
|
return self.load_into_concat_dataset(split, datasets, data_param_list) |
|
|
|
def load_sampled_multi_dataset( |
|
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs |
|
): |
|
datasets, data_param_list = self.load_split_datasets( |
|
split, training, epoch, combine, shard_epoch=shard_epoch, **kwargs |
|
) |
|
if training and split == getattr(self.args, "train_subset", None): |
|
sample_ratios = self.get_sampling_ratios(data_param_list, datasets, epoch) |
|
return SampledMultiDataset( |
|
OrderedDict(datasets), |
|
epoch=epoch, |
|
|
|
sampling_ratios=sample_ratios, |
|
eval_key=None, |
|
collate_format=CollateFormat.single, |
|
virtual_size=self.args.virtual_data_size, |
|
split=split, |
|
|
|
shared_collater=self._shared_collater(), |
|
) |
|
else: |
|
return self.load_into_concat_dataset(split, datasets, data_param_list) |
|
|
|
def load_dataset( |
|
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs |
|
): |
|
if self.args.virtual_epoch_size is None: |
|
return self.load_sampled_multi_dataset( |
|
split, training, epoch, combine, shard_epoch, **kwargs |
|
) |
|
else: |
|
return self.load_sampled_multi_epoch_dataset( |
|
split, training, epoch, combine, shard_epoch, **kwargs |
|
) |
|
|