|
|
|
|
|
|
|
|
|
|
|
import datetime |
|
import hashlib |
|
import logging |
|
import time |
|
from bisect import bisect_right |
|
from collections import OrderedDict, defaultdict |
|
from enum import Enum |
|
from typing import List |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from fairseq.data import FairseqDataset, data_utils |
|
from fairseq.distributed import utils as distributed_utils |
|
|
|
|
|
def get_time_gap(s, e): |
|
return ( |
|
datetime.datetime.fromtimestamp(e) - datetime.datetime.fromtimestamp(s) |
|
).__str__() |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def default_virtual_size_func(datasets, ratios, max_scale_up=1.5): |
|
sizes = [len(d) for d in datasets] |
|
if ratios is None: |
|
return sum(sizes) |
|
largest_idx = np.argmax(sizes) |
|
largest_r = ratios[largest_idx] |
|
largest_s = sizes[largest_idx] |
|
|
|
virtual_sizes = [(r / largest_r) * largest_s for r in ratios] |
|
vsize = sum(virtual_sizes) |
|
max_size = sum(sizes) * max_scale_up |
|
return int(vsize if vsize < max_size else max_size) |
|
|
|
|
|
class CollateFormat(Enum): |
|
single = 1 |
|
ordered_dict = 2 |
|
|
|
|
|
class SampledMultiDataset(FairseqDataset): |
|
"""Samples from multiple sub-datasets according to given sampling ratios. |
|
Args: |
|
datasets ( |
|
List[~torch.utils.data.Dataset] |
|
or OrderedDict[str, ~torch.utils.data.Dataset] |
|
): datasets |
|
sampling_ratios (List[float]): list of probability of each dataset to be sampled |
|
(default: None, which corresponds to concatenating all dataset together). |
|
seed (int): RNG seed to use (default: 2). |
|
epoch (int): starting epoch number (default: 1). |
|
eval_key (str, optional): a key used at evaluation time that causes |
|
this instance to pass-through batches from *datasets[eval_key]*. |
|
collate_format (CollateFormat): collater output format, either CollateFormat.ordered_dict or |
|
CollateFormat.single (default: CollateFormat.single) where CollateFormat.single configures |
|
the collater to output batches of data mixed from all sub-datasets, |
|
and CollateFormat.ordered_dict configures the collater to output a dictionary of batches indexed by keys |
|
of sub-datasets. |
|
Note that not all sub-datasets will present in a single batch in both formats. |
|
virtual_size (int, or callable): the expected virtual size of the dataset (default: default_virtual_size_func). |
|
split (str): the split of the data, e.g. 'train', 'valid' or 'test'. |
|
shared_collater (bool): whether or not to all sub-datasets have the same collater. |
|
shuffle (bool): whether or not to shuffle data (default: True). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
datasets, |
|
sampling_ratios=None, |
|
seed=2, |
|
epoch=1, |
|
eval_key=None, |
|
collate_format=CollateFormat.single, |
|
virtual_size=default_virtual_size_func, |
|
split="", |
|
shared_collater=False, |
|
shuffle=True, |
|
): |
|
super().__init__() |
|
self.shared_collater = shared_collater |
|
self.shuffle = shuffle |
|
|
|
if isinstance(datasets, OrderedDict): |
|
self.keys = list(datasets.keys()) |
|
datasets = list(datasets.values()) |
|
elif isinstance(datasets, List): |
|
self.keys = list(range(len(datasets))) |
|
else: |
|
raise AssertionError() |
|
self.datasets = datasets |
|
self.split = split |
|
|
|
self.eval_key = eval_key |
|
if self.eval_key is not None: |
|
self.collate_format = CollateFormat.single |
|
else: |
|
self.collate_format = collate_format |
|
|
|
self.seed = seed |
|
self._cur_epoch = None |
|
|
|
self.cumulated_sizes = None |
|
|
|
|
|
|
|
self._cur_indices = None |
|
|
|
self._sizes = None |
|
self.virtual_size_per_dataset = None |
|
|
|
self._reset_cached_properties() |
|
self.setup_sampling(sampling_ratios, virtual_size) |
|
self.set_epoch(epoch) |
|
|
|
def _clean_if_not_none(self, var_list): |
|
for v in var_list: |
|
if v is not None: |
|
del v |
|
|
|
def _reset_cached_properties(self): |
|
self._clean_if_not_none([self._sizes, self._cur_indices]) |
|
self._sizes = None |
|
self._cur_indices = None |
|
|
|
def setup_sampling(self, sample_ratios, virtual_size): |
|
sizes = [len(d) for d in self.datasets] |
|
if sample_ratios is None: |
|
|
|
self.sample_ratios = None |
|
self.virtual_size = sum(sizes) |
|
else: |
|
if not isinstance(sample_ratios, np.ndarray): |
|
sample_ratios = np.array(sample_ratios) |
|
self.sample_ratios = sample_ratios |
|
virtual_size = ( |
|
default_virtual_size_func if virtual_size is None else virtual_size |
|
) |
|
self.virtual_size = ( |
|
virtual_size(self.datasets, self.sample_ratios) |
|
if callable(virtual_size) |
|
else virtual_size |
|
) |
|
|
|
def adjust_sampling(self, epoch, sampling_ratios, virtual_size): |
|
if sampling_ratios is not None: |
|
sampling_ratios = self._sync_sample_ratios(sampling_ratios) |
|
self.setup_sampling(sampling_ratios, virtual_size) |
|
|
|
def _sync_sample_ratios(self, ratios): |
|
|
|
|
|
ratios = torch.DoubleTensor(ratios) |
|
if torch.distributed.is_initialized(): |
|
if torch.cuda.is_available(): |
|
distributed_utils.all_reduce( |
|
ratios.cuda(), group=distributed_utils.get_data_parallel_group() |
|
) |
|
else: |
|
distributed_utils.all_reduce( |
|
ratios, group=distributed_utils.get_data_parallel_group() |
|
) |
|
ret = ratios.cpu() |
|
ret = ret.numpy() |
|
return ret |
|
|
|
def random_choice_in_dataset(self, rng, dataset, choice_size): |
|
if hasattr(dataset, "random_choice_in_dataset"): |
|
return dataset.random_choice_in_dataset(rng, choice_size) |
|
dataset_size = len(dataset) |
|
return rng.choice( |
|
dataset_size, choice_size, replace=(choice_size > dataset_size) |
|
) |
|
|
|
def get_virtual_indices(self, rng, datasets, sample_ratios, virtual_size): |
|
def get_counts(sample_ratios): |
|
counts = np.array([virtual_size * r for r in sample_ratios], dtype=np.int64) |
|
diff = virtual_size - counts.sum() |
|
assert diff >= 0 |
|
|
|
if diff > 0: |
|
dataset_indices = rng.choice( |
|
len(sample_ratios), size=diff, p=sample_ratios |
|
) |
|
for i in dataset_indices: |
|
counts[i] += 1 |
|
return counts |
|
|
|
def get_in_dataset_indices(datasets, sizes, sample_ratios): |
|
counts = get_counts(sample_ratios) |
|
|
|
|
|
indices = [ |
|
self.random_choice_in_dataset(rng, d, c) |
|
for c, d in zip(counts, datasets) |
|
] |
|
return indices |
|
|
|
sizes = [len(d) for d in datasets] |
|
if sample_ratios is None: |
|
|
|
in_dataset_indices = [list(range(s)) for s in sizes] |
|
virtual_sizes_per_dataset = sizes |
|
else: |
|
ratios = sample_ratios / sample_ratios.sum() |
|
in_dataset_indices = get_in_dataset_indices(datasets, sizes, ratios) |
|
virtual_sizes_per_dataset = [len(d) for d in in_dataset_indices] |
|
virtual_sizes_per_dataset = np.array(virtual_sizes_per_dataset, np.int64) |
|
cumulative_sizes = np.cumsum(virtual_sizes_per_dataset) |
|
assert sum(virtual_sizes_per_dataset) == virtual_size |
|
assert cumulative_sizes[-1] == virtual_size |
|
if virtual_size < sum(sizes): |
|
logger.warning( |
|
f"virtual data size ({virtual_size}) is less than real data size ({sum(sizes)})." |
|
" If virtual size << real data size, there could be data coverage issue." |
|
) |
|
in_dataset_indices = np.hstack(in_dataset_indices) |
|
return in_dataset_indices, cumulative_sizes, virtual_sizes_per_dataset |
|
|
|
def _get_dataset_and_index(self, index): |
|
i = bisect_right(self.cumulated_sizes, index) |
|
return i, self._cur_indices[index] |
|
|
|
def __getitem__(self, index): |
|
|
|
|
|
ds_idx, ds_sample_idx = self._get_dataset_and_index(index) |
|
ret = (ds_idx, self.datasets[ds_idx][ds_sample_idx]) |
|
return ret |
|
|
|
def num_tokens(self, index): |
|
return self.sizes[index].max() |
|
|
|
def num_tokens_vec(self, indices): |
|
sizes_vec = self.sizes[np.array(indices)] |
|
|
|
return np.amax(sizes_vec, axis=tuple(range(1, len(sizes_vec.shape)))) |
|
|
|
def size(self, index): |
|
return self.sizes[index] |
|
|
|
def __len__(self): |
|
return self.virtual_size |
|
|
|
def collater(self, samples, **extra_args): |
|
"""Merge a list of samples to form a mini-batch.""" |
|
if len(samples) == 0: |
|
return None |
|
if self.collate_format == "ordered_dict": |
|
collect_samples = [[] for _ in range(len(self.datasets))] |
|
for (i, sample) in samples: |
|
collect_samples[i].append(sample) |
|
batch = OrderedDict( |
|
[ |
|
(self.keys[i], dataset.collater(collect_samples[i])) |
|
for i, (key, dataset) in enumerate(zip(self.keys, self.datasets)) |
|
if len(collect_samples[i]) > 0 |
|
] |
|
) |
|
elif self.shared_collater: |
|
batch = self.datasets[0].collater([s for _, s in samples]) |
|
else: |
|
samples_dict = defaultdict(list) |
|
pad_to_length = ( |
|
defaultdict(int) |
|
if "pad_to_length" not in extra_args |
|
else extra_args["pad_to_length"] |
|
) |
|
for ds_idx, s in samples: |
|
pad_to_length["source"] = max( |
|
pad_to_length["source"], s["source"].size(0) |
|
) |
|
if s["target"] is not None: |
|
pad_to_length["target"] = max( |
|
pad_to_length["target"], s["target"].size(0) |
|
) |
|
samples_dict[ds_idx].append(s) |
|
batches = [ |
|
self.datasets[i].collater(samples_dict[i], pad_to_length=pad_to_length) |
|
for i in range(len(self.datasets)) |
|
if len(samples_dict[i]) > 0 |
|
] |
|
|
|
def straight_data(tensors): |
|
batch = torch.cat(tensors, dim=0) |
|
return batch |
|
|
|
src_lengths = straight_data( |
|
[b["net_input"]["src_lengths"] for b in batches] |
|
) |
|
src_lengths, sort_order = src_lengths.sort(descending=True) |
|
|
|
def straight_order(tensors): |
|
batch = straight_data(tensors) |
|
return batch.index_select(0, sort_order) |
|
|
|
batch = { |
|
"id": straight_order([b["id"] for b in batches]), |
|
"nsentences": sum(b["nsentences"] for b in batches), |
|
"ntokens": sum(b["ntokens"] for b in batches), |
|
"net_input": { |
|
"src_tokens": straight_order( |
|
[b["net_input"]["src_tokens"] for b in batches] |
|
), |
|
"src_lengths": src_lengths, |
|
}, |
|
"target": straight_order([b["target"] for b in batches]) |
|
if batches[0]["target"] is not None |
|
else None, |
|
} |
|
if "prev_output_tokens" in batches[0]["net_input"]: |
|
batch["net_input"]["prev_output_tokens"] = straight_order( |
|
[b["net_input"]["prev_output_tokens"] for b in batches] |
|
) |
|
if "src_lang_id" in batches[0]["net_input"]: |
|
batch["net_input"]["src_lang_id"] = straight_order( |
|
[b["net_input"]["src_lang_id"] for b in batches] |
|
) |
|
if "tgt_lang_id" in batches[0]: |
|
batch["tgt_lang_id"] = straight_order( |
|
[b["tgt_lang_id"] for b in batches] |
|
) |
|
return batch |
|
|
|
@property |
|
def sizes(self): |
|
if self._sizes is not None: |
|
return self._sizes |
|
start_time = time.time() |
|
in_sub_dataset_indices = [ |
|
self._cur_indices[ |
|
0 if i == 0 else self.cumulated_sizes[i - 1] : self.cumulated_sizes[i] |
|
] |
|
for i in range(len(self.datasets)) |
|
] |
|
sub_dataset_sizes = [ |
|
d.sizes[indices] |
|
for d, indices in zip(self.datasets, in_sub_dataset_indices) |
|
] |
|
self._sizes = np.vstack(sub_dataset_sizes) |
|
logger.info(f"sizes() calling time: {get_time_gap(start_time, time.time())}") |
|
return self._sizes |
|
|
|
def ordered_indices(self): |
|
if self.shuffle: |
|
indices = np.random.permutation(len(self)) |
|
else: |
|
indices = np.arange(len(self)) |
|
|
|
sizes = self.sizes |
|
tgt_sizes = sizes[:, 1] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else None |
|
src_sizes = ( |
|
sizes[:, 0] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else sizes |
|
) |
|
|
|
|
|
if tgt_sizes is not None: |
|
indices = indices[np.argsort(tgt_sizes[indices], kind="mergesort")] |
|
sort_indices = indices[np.argsort(src_sizes[indices], kind="mergesort")] |
|
return sort_indices |
|
|
|
def prefetch(self, indices): |
|
prefetch_indices = [[] for _ in range(len(self.datasets))] |
|
for i in indices: |
|
ds_idx, ds_sample_idx = self._get_dataset_and_index(i) |
|
prefetch_indices[ds_idx].append(ds_sample_idx) |
|
for i in range(len(prefetch_indices)): |
|
self.datasets[i].prefetch(prefetch_indices[i]) |
|
|
|
@property |
|
def can_reuse_epoch_itr_across_epochs(self): |
|
return False |
|
|
|
def set_epoch(self, epoch): |
|
super().set_epoch(epoch) |
|
if epoch == self._cur_epoch: |
|
|
|
return |
|
for d in self.datasets: |
|
if hasattr(d, "set_epoch"): |
|
d.set_epoch(epoch) |
|
self._cur_epoch = epoch |
|
self._establish_virtual_datasets() |
|
|
|
def _establish_virtual_datasets(self): |
|
if self.sample_ratios is None and self._cur_indices is not None: |
|
|
|
return |
|
self._reset_cached_properties() |
|
|
|
start_time = time.time() |
|
|
|
|
|
rng = np.random.RandomState( |
|
[ |
|
int( |
|
hashlib.sha1( |
|
str(self.__class__.__name__).encode("utf-8") |
|
).hexdigest(), |
|
16, |
|
) |
|
% (2**32), |
|
self.seed % (2**32), |
|
self._cur_epoch, |
|
] |
|
) |
|
self._clean_if_not_none( |
|
[self.cumulated_sizes, self.virtual_size_per_dataset, self._sizes] |
|
) |
|
self._sizes = None |
|
|
|
indices, cumulated_sizes, virtual_size_per_dataset = self.get_virtual_indices( |
|
rng, self.datasets, self.sample_ratios, self.virtual_size |
|
) |
|
self._cur_indices = indices |
|
self.cumulated_sizes = cumulated_sizes |
|
self.virtual_size_per_dataset = virtual_size_per_dataset |
|
|
|
raw_sizes = [len(d) for d in self.datasets] |
|
sampled_sizes = self.virtual_size_per_dataset |
|
logger.info( |
|
f"[{self.split}] Raw sizes: {str(dict(zip(self.keys, raw_sizes)))}; " |
|
f"raw total size: {sum(raw_sizes)}" |
|
) |
|
logger.info( |
|
f"[{self.split}] Resampled sizes: {str(dict(zip(self.keys, sampled_sizes)))}; " |
|
f"resampled total size: {sum(sampled_sizes)}" |
|
) |
|
if self.sample_ratios is not None: |
|
logger.info( |
|
f"[{self.split}] Upsampling ratios: {str(dict(zip(self.keys, self.sample_ratios)))}" |
|
) |
|
else: |
|
logger.info(f"[{self.split}] A concat dataset") |
|
logger.info( |
|
f"[{self.split}] virtual dataset established time: {get_time_gap(start_time, time.time())}" |
|
) |
|
|
|
def filter_indices_by_size(self, indices, max_sizes): |
|
"""Filter a list of sample indices. Remove those that are longer |
|
than specified in max_sizes. |
|
|
|
Args: |
|
indices (np.array): original array of sample indices |
|
max_sizes (int or list[int] or tuple[int]): max sample size, |
|
can be defined separately for src and tgt (then list or tuple) |
|
|
|
Returns: |
|
np.array: filtered sample array |
|
list: list of removed indices |
|
""" |
|
sizes = self.sizes |
|
tgt_sizes = sizes[:, 1] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else None |
|
src_sizes = ( |
|
sizes[:, 0] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else sizes |
|
) |
|
|
|
return data_utils.filter_paired_dataset_indices_by_size( |
|
src_sizes, tgt_sizes, indices, max_sizes |
|
) |
|
|