|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import torch |
|
import json |
|
|
|
from argparse import Namespace |
|
from dataclasses import dataclass, field |
|
from typing import Optional, Any |
|
|
|
from fairseq.data import AddTargetDataset, Dictionary, encoders |
|
from fairseq.tasks.audio_pretraining import AudioPretrainingTask, AudioPretrainingConfig |
|
from fairseq.dataclass import FairseqDataclass |
|
from fairseq.dataclass.configs import GenerationConfig |
|
from fairseq.data.text_compressor import TextCompressor, TextCompressionLevel |
|
|
|
from . import register_task |
|
from .. import utils |
|
from ..logging import metrics |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class LabelEncoder(object): |
|
def __init__(self, dictionary): |
|
self.dictionary = dictionary |
|
|
|
def __call__(self, label): |
|
return self.dictionary.encode_line( |
|
label, append_eos=False, add_if_not_exist=False |
|
) |
|
|
|
|
|
def label_len_fn(label): |
|
return len(label.split(" ")) |
|
|
|
|
|
@dataclass |
|
class AudioFinetuningConfig(AudioPretrainingConfig): |
|
|
|
|
|
eval_wer: bool = field( |
|
default=False, metadata={"help": "compute WER for Seq2Seq models"} |
|
) |
|
eval_wer_config: GenerationConfig = field( |
|
default_factory=lambda: GenerationConfig(), |
|
metadata={"help": "beam search config for evaluating wer during training"}, |
|
) |
|
eval_wer_tokenizer: Any = field( |
|
default=None, |
|
metadata={"help": "tokenizer config for evaluating wer during training"}, |
|
) |
|
eval_wer_post_process: str = field( |
|
default="letter", |
|
metadata={ |
|
"help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)" |
|
}, |
|
) |
|
eval_bleu: bool = field( |
|
default=False, metadata={"help": "evaluation with BLEU scores"} |
|
) |
|
eval_bleu_detok: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "detokenize before computing BLEU (e.g., 'moses'); " |
|
"required if using --eval-bleu; use 'space' to disable " |
|
"detokenization; see fairseq.data.encoders for other options" |
|
}, |
|
) |
|
eval_bleu_detok_args: str = field( |
|
default="{}", metadata={"help": "args for building the tokenizer, if needed"} |
|
) |
|
eval_tokenized_bleu: bool = field( |
|
default=False, metadata={"help": "compute tokenized BLEU instead of sacrebleu"} |
|
) |
|
eval_bleu_remove_bpe: Optional[str] = field( |
|
default=None, metadata={"help": "remove BPE before computing BLEU"} |
|
) |
|
eval_bleu_args: str = field( |
|
default="{}", |
|
metadata={ |
|
"help": "generation args for BLUE scoring, e.g., " |
|
'\'{"beam": 4, "lenpen": 0.6}\'' |
|
}, |
|
) |
|
eval_bleu_print_samples: bool = field( |
|
default=False, metadata={"help": "print sample generations during validation"} |
|
) |
|
autoregressive: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "required for autoregressive decoders (like seq2seq models); " |
|
"adds 'prev_output_tokens' to input and appends eos to target" |
|
}, |
|
) |
|
|
|
|
|
@register_task("audio_finetuning", dataclass=AudioFinetuningConfig) |
|
class AudioFinetuningTask(AudioPretrainingTask): |
|
""" """ |
|
|
|
cfg: AudioFinetuningConfig |
|
|
|
def __init__( |
|
self, |
|
cfg: AudioFinetuningConfig, |
|
): |
|
super().__init__(cfg) |
|
self.blank_symbol = "<s>" |
|
|
|
self.state.add_factory("target_dictionary", self.load_target_dictionary) |
|
|
|
def load_target_dictionary(self): |
|
if self.cfg.labels: |
|
dict_path = os.path.join(self.cfg.data, f"dict.{self.cfg.labels}.txt") |
|
return Dictionary.load(dict_path) |
|
return None |
|
|
|
def load_dataset( |
|
self, split: str, task_cfg: AudioFinetuningConfig = None, **kwargs |
|
): |
|
super().load_dataset(split, task_cfg, **kwargs) |
|
|
|
task_cfg = task_cfg or self.cfg |
|
assert task_cfg.labels is not None |
|
text_compression_level = getattr( |
|
TextCompressionLevel, str(self.cfg.text_compression_level) |
|
) |
|
data_path = self.cfg.data |
|
label_path = os.path.join(data_path, f"{split}.{task_cfg.labels}") |
|
skipped_indices = getattr(self.datasets[split], "skipped_indices", set()) |
|
text_compressor = TextCompressor(level=text_compression_level) |
|
with open(label_path, "r") as f: |
|
labels = [ |
|
text_compressor.compress(l) |
|
for i, l in enumerate(f) |
|
if i not in skipped_indices |
|
] |
|
|
|
assert len(labels) == len(self.datasets[split]), ( |
|
f"labels length ({len(labels)}) and dataset length " |
|
f"({len(self.datasets[split])}) do not match" |
|
) |
|
|
|
process_label = LabelEncoder(self.target_dictionary) |
|
|
|
self.datasets[split] = AddTargetDataset( |
|
self.datasets[split], |
|
labels, |
|
pad=self.target_dictionary.pad(), |
|
eos=self.target_dictionary.eos(), |
|
batch_targets=True, |
|
process_label=process_label, |
|
label_len_fn=label_len_fn, |
|
add_to_input=task_cfg.get("autoregressive", False), |
|
text_compression_level=text_compression_level, |
|
) |
|
|
|
@property |
|
def target_dictionary(self): |
|
"""Return the :class:`~fairseq.data.Dictionary` for the language |
|
model.""" |
|
return self.state.target_dictionary |
|
|
|
def valid_step(self, sample, model, criterion): |
|
loss, sample_size, logging_output = super().valid_step(sample, model, criterion) |
|
if self.cfg.eval_wer and self.cfg.autoregressive: |
|
metrics = self._inference_with_wer(self.sequence_generator, sample, model) |
|
logging_output["_num_char_errors"] = metrics["num_char_errors"] |
|
logging_output["_num_chars"] = metrics["num_chars"] |
|
logging_output["_num_word_errors"] = metrics["num_word_errors"] |
|
logging_output["_num_words"] = metrics["num_words"] |
|
if self.cfg.eval_bleu and self.cfg.autoregressive: |
|
metrics = self._inference_with_bleu(self.sequence_generator, sample, model) |
|
logging_output["_bleu_sys_len"] = metrics.sys_len |
|
logging_output["_bleu_ref_len"] = metrics.ref_len |
|
|
|
|
|
assert len(metrics.counts) == 4 |
|
for i in range(4): |
|
logging_output[f"_bleu_counts_{i}"] = metrics.counts[i] |
|
logging_output[f"_bleu_totals_{i}"] = metrics.totals[i] |
|
return loss, sample_size, logging_output |
|
|
|
def build_model(self, model_cfg: FairseqDataclass, from_checkpoint=False): |
|
model = super().build_model(model_cfg, from_checkpoint) |
|
|
|
if self.cfg.eval_wer and self.cfg.autoregressive: |
|
self.sequence_generator = self.build_generator( |
|
[model], |
|
self.cfg.eval_wer_config, |
|
) |
|
if self.cfg.eval_wer_tokenizer: |
|
self.tokenizer = encoders.build_tokenizer(self.cfg.eval_wer_tokenizer) |
|
else: |
|
self.tokenizer = None |
|
if self.cfg.eval_bleu and self.cfg.autoregressive: |
|
assert self.cfg.eval_bleu_detok is not None, ( |
|
"--eval-bleu-detok is required if using --eval-bleu; " |
|
"try --eval-bleu-detok=moses (or --eval-bleu-detok=space " |
|
"to disable detokenization, e.g., when using sentencepiece)" |
|
) |
|
detok_args = json.loads(self.cfg.eval_bleu_detok_args) |
|
self.tokenizer = encoders.build_tokenizer( |
|
Namespace(tokenizer=self.cfg.eval_bleu_detok, **detok_args) |
|
) |
|
gen_args = json.loads(self.cfg.eval_bleu_args) |
|
gen_args = Namespace(**gen_args) |
|
self.sequence_generator = self.build_generator([model], gen_args) |
|
|
|
return model |
|
|
|
def _inference_with_wer(self, generator, sample, model): |
|
import editdistance |
|
|
|
def decode(toks): |
|
s = self.target_dictionary.string( |
|
toks.int().cpu(), |
|
self.cfg.eval_wer_post_process, |
|
escape_unk=True, |
|
) |
|
if self.tokenizer: |
|
s = self.tokenizer.decode(s) |
|
return s |
|
|
|
num_word_errors, num_char_errors = 0, 0 |
|
num_chars, num_words = 0, 0 |
|
gen_out = self.inference_step(generator, [model], sample, None) |
|
for i in range(len(gen_out)): |
|
hyp = decode(gen_out[i][0]["tokens"]) |
|
ref = decode( |
|
utils.strip_pad(sample["target"][i], self.target_dictionary.pad()), |
|
) |
|
num_char_errors += editdistance.eval(hyp, ref) |
|
num_chars += len(ref) |
|
hyp_words = hyp.split() |
|
ref_words = ref.split() |
|
num_word_errors += editdistance.eval(hyp_words, ref_words) |
|
num_words += len(ref_words) |
|
|
|
return { |
|
"num_char_errors": num_char_errors, |
|
"num_chars": num_chars, |
|
"num_word_errors": num_word_errors, |
|
"num_words": num_words, |
|
} |
|
|
|
def _inference_with_bleu(self, generator, sample, model): |
|
import sacrebleu |
|
|
|
def decode(toks, is_ref): |
|
s = self.target_dictionary.string( |
|
toks.int().cpu(), |
|
self.cfg.eval_bleu_remove_bpe, |
|
|
|
|
|
|
|
|
|
|
|
unk_string=("UNKNOWNTOKENINREF" if is_ref else "UNKNOWNTOKENINHYP"), |
|
) |
|
if self.tokenizer: |
|
s = self.tokenizer.decode(s) |
|
return s |
|
|
|
gen_out = self.inference_step(generator, [model], sample) |
|
hyps, refs = [], [] |
|
for i in range(len(gen_out)): |
|
hyps.append(decode(gen_out[i][0]["tokens"], is_ref=False)) |
|
refs.append( |
|
decode( |
|
utils.strip_pad(sample["target"][i], self.target_dictionary.pad()), |
|
is_ref=True, |
|
) |
|
) |
|
if self.cfg.eval_bleu_print_samples: |
|
logger.info("H-{} {}".format(sample["id"][0], hyps[0])) |
|
logger.info("T-{} {}".format(sample["id"][0], refs[0])) |
|
|
|
eval_tokenization = "none" if self.cfg.eval_tokenized_bleu else "13a" |
|
return sacrebleu.corpus_bleu(hyps, [refs], tokenize=eval_tokenization) |
|
|
|
def reduce_metrics(self, logging_outputs, criterion): |
|
super().reduce_metrics(logging_outputs, criterion) |
|
|
|
if self.cfg.eval_wer: |
|
zero = torch.scalar_tensor(0.0) |
|
num_char_errors = sum( |
|
log.get("_num_char_errors", zero) for log in logging_outputs |
|
) |
|
num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs) |
|
num_word_errors = sum( |
|
log.get("_num_word_errors", zero) for log in logging_outputs |
|
) |
|
num_words = sum(log.get("_num_words", zero) for log in logging_outputs) |
|
metrics.log_scalar("_num_char_errors", num_char_errors) |
|
metrics.log_scalar("_num_chars", num_chars) |
|
metrics.log_scalar("_num_word_errors", num_word_errors) |
|
metrics.log_scalar("_num_words", num_words) |
|
if num_chars > 0: |
|
metrics.log_derived( |
|
"uer", |
|
lambda meters: meters["_num_char_errors"].sum |
|
* 100.0 |
|
/ meters["_num_chars"].sum |
|
if meters["_num_chars"].sum > 0 |
|
else float("nan"), |
|
) |
|
if num_words > 0: |
|
metrics.log_derived( |
|
"wer", |
|
lambda meters: meters["_num_word_errors"].sum |
|
* 100.0 |
|
/ meters["_num_words"].sum |
|
if meters["_num_words"].sum > 0 |
|
else float("nan"), |
|
) |
|
if self.cfg.eval_bleu: |
|
len_keys = ["_bleu_sys_len", "_bleu_ref_len"] |
|
count_keys = [f"_bleu_counts_{i}" for i in range(4)] |
|
total_keys = [f"_bleu_totals_{i}" for i in range(4)] |
|
for k in len_keys + count_keys + total_keys: |
|
metrics.log_scalar(k, sum(log.get(k, 0) for log in logging_outputs)) |
|
|
|
import sacrebleu |
|
|
|
metrics.log_derived( |
|
"bleu", |
|
lambda meters: sacrebleu.compute_bleu( |
|
correct=[meters[k].sum for k in count_keys], |
|
total=[meters[k].sum for k in total_keys], |
|
sys_len=meters["_bleu_sys_len"].sum, |
|
ref_len=meters["_bleu_ref_len"].sum, |
|
smooth_method="exp", |
|
).score, |
|
) |
|
|