|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import warnings |
|
from argparse import Namespace |
|
from typing import Any, Callable, Dict, List |
|
|
|
import torch |
|
from fairseq import metrics, search, tokenizer, utils |
|
from fairseq.data import Dictionary, FairseqDataset, data_utils, encoders, iterators |
|
from fairseq.dataclass import FairseqDataclass |
|
from fairseq.dataclass.utils import gen_parser_from_dataclass |
|
from fairseq.optim.amp_optimizer import AMPOptimizer |
|
from omegaconf import DictConfig |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class StatefulContainer(object): |
|
def __init__(self): |
|
self._state = dict() |
|
self._factories = dict() |
|
|
|
def add_factory(self, name, factory: Callable[[], Any]): |
|
self._factories[name] = factory |
|
|
|
def merge_state_dict(self, state_dict: Dict[str, Any]): |
|
self._state.update(state_dict) |
|
|
|
@property |
|
def state_dict(self) -> Dict[str, Any]: |
|
return self._state |
|
|
|
def __getattr__(self, name): |
|
if name not in self._state and name in self._factories: |
|
self._state[name] = self._factories[name]() |
|
|
|
if name in self._state: |
|
return self._state[name] |
|
|
|
raise AttributeError(f"Task state has no factory for attribute {name}") |
|
|
|
|
|
class FairseqTask(object): |
|
""" |
|
Tasks store dictionaries and provide helpers for loading/iterating over |
|
Datasets, initializing the Model/Criterion and calculating the loss. |
|
|
|
Tasks have limited statefulness. In particular, state that needs to be |
|
saved to/loaded from checkpoints needs to be stored in the `self.state` |
|
:class:`StatefulContainer` object. For example:: |
|
|
|
self.state.add_factory("dictionary", self.load_dictionary) |
|
print(self.state.dictionary) # calls self.load_dictionary() |
|
|
|
This is necessary so that when loading checkpoints, we can properly |
|
recreate the task state after initializing the task instance. |
|
""" |
|
|
|
@classmethod |
|
def add_args(cls, parser): |
|
"""Add task-specific arguments to the parser.""" |
|
dc = getattr(cls, "__dataclass", None) |
|
if dc is not None: |
|
gen_parser_from_dataclass(parser, dc()) |
|
|
|
@staticmethod |
|
def logging_outputs_can_be_summed(criterion) -> bool: |
|
""" |
|
Whether the logging outputs returned by `train_step` and `valid_step` can |
|
be summed across workers prior to calling `aggregate_logging_outputs`. |
|
Setting this to True will improves distributed training speed. |
|
""" |
|
return criterion.logging_outputs_can_be_summed() |
|
|
|
def __init__(self, cfg: FairseqDataclass, **kwargs): |
|
self.cfg = cfg |
|
self.datasets = dict() |
|
self.dataset_to_epoch_iter = dict() |
|
self.state = StatefulContainer() |
|
|
|
@classmethod |
|
def load_dictionary(cls, filename): |
|
"""Load the dictionary from the filename |
|
|
|
Args: |
|
filename (str): the filename |
|
""" |
|
return Dictionary.load(filename) |
|
|
|
@classmethod |
|
def build_dictionary( |
|
cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8 |
|
): |
|
"""Build the dictionary |
|
|
|
Args: |
|
filenames (list): list of filenames |
|
workers (int): number of concurrent workers |
|
threshold (int): defines the minimum word count |
|
nwords (int): defines the total number of words in the final dictionary, |
|
including special symbols |
|
padding_factor (int): can be used to pad the dictionary size to be a |
|
multiple of 8, which is important on some hardware (e.g., Nvidia |
|
Tensor Cores). |
|
""" |
|
d = Dictionary() |
|
for filename in filenames: |
|
Dictionary.add_file_to_dictionary( |
|
filename, d, tokenizer.tokenize_line, workers |
|
) |
|
d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor) |
|
return d |
|
|
|
@classmethod |
|
def setup_task(cls, cfg: DictConfig, **kwargs): |
|
"""Setup the task (e.g., load dictionaries). |
|
|
|
Args: |
|
cfg (omegaconf.DictConfig): parsed command-line arguments |
|
""" |
|
return cls(cfg, **kwargs) |
|
|
|
def has_sharded_data(self, split): |
|
return os.pathsep in getattr(self.cfg, "data", "") |
|
|
|
def load_dataset( |
|
self, |
|
split: str, |
|
combine: bool = False, |
|
task_cfg: FairseqDataclass = None, |
|
**kwargs, |
|
): |
|
"""Load a given dataset split. |
|
|
|
Args: |
|
split (str): name of the split (e.g., train, valid, test) |
|
combine (bool): combines a split segmented into pieces into one dataset |
|
task_cfg (FairseqDataclass): optional task configuration stored in the checkpoint that can be used |
|
to load datasets |
|
""" |
|
raise NotImplementedError |
|
|
|
def dataset(self, split): |
|
""" |
|
Return a loaded dataset split. |
|
|
|
Args: |
|
split (str): name of the split (e.g., train, valid, test) |
|
|
|
Returns: |
|
a :class:`~fairseq.data.FairseqDataset` corresponding to *split* |
|
""" |
|
from fairseq.data import FairseqDataset |
|
|
|
if split not in self.datasets: |
|
raise KeyError("Dataset not loaded: " + split) |
|
if not isinstance(self.datasets[split], FairseqDataset): |
|
raise TypeError("Datasets are expected to be of type FairseqDataset") |
|
return self.datasets[split] |
|
|
|
def filter_indices_by_size( |
|
self, indices, dataset, max_positions=None, ignore_invalid_inputs=False |
|
): |
|
""" |
|
Filter examples that are too large |
|
|
|
Args: |
|
indices (np.array): original array of sample indices |
|
dataset (~fairseq.data.FairseqDataset): dataset to batch |
|
max_positions (optional): max sentence length supported by the |
|
model (default: None). |
|
ignore_invalid_inputs (bool, optional): don't raise Exception for |
|
sentences that are too long (default: False). |
|
Returns: |
|
np.array: array of filtered sample indices |
|
""" |
|
indices, ignored = dataset.filter_indices_by_size(indices, max_positions) |
|
if len(ignored) > 0: |
|
if not ignore_invalid_inputs: |
|
raise Exception( |
|
( |
|
"Size of sample #{} is invalid (={}) since max_positions={}, " |
|
"skip this example with --skip-invalid-size-inputs-valid-test" |
|
).format(ignored[0], dataset.size(ignored[0]), max_positions) |
|
) |
|
logger.warning( |
|
( |
|
"{:,} samples have invalid sizes and will be skipped, " |
|
"max_positions={}, first few sample ids={}" |
|
).format(len(ignored), max_positions, ignored[:10]) |
|
) |
|
return indices |
|
|
|
def can_reuse_epoch_itr(self, dataset): |
|
|
|
|
|
|
|
|
|
return getattr(dataset, "can_reuse_epoch_itr_across_epochs", False) |
|
|
|
def get_batch_iterator( |
|
self, |
|
dataset, |
|
max_tokens=None, |
|
max_sentences=None, |
|
max_positions=None, |
|
ignore_invalid_inputs=False, |
|
required_batch_size_multiple=1, |
|
seed=1, |
|
num_shards=1, |
|
shard_id=0, |
|
num_workers=0, |
|
epoch=1, |
|
data_buffer_size=0, |
|
disable_iterator_cache=False, |
|
skip_remainder_batch=False, |
|
grouped_shuffling=False, |
|
update_epoch_batch_itr=False, |
|
): |
|
""" |
|
Get an iterator that yields batches of data from the given dataset. |
|
|
|
Args: |
|
dataset (~fairseq.data.FairseqDataset): dataset to batch |
|
max_tokens (int, optional): max number of tokens in each batch |
|
(default: None). |
|
max_sentences (int, optional): max number of sentences in each |
|
batch (default: None). |
|
max_positions (optional): max sentence length supported by the |
|
model (default: None). |
|
ignore_invalid_inputs (bool, optional): don't raise Exception for |
|
sentences that are too long (default: False). |
|
required_batch_size_multiple (int, optional): require batch size to |
|
be a multiple of N (default: 1). |
|
seed (int, optional): seed for random number generator for |
|
reproducibility (default: 1). |
|
num_shards (int, optional): shard the data iterator into N |
|
shards (default: 1). |
|
shard_id (int, optional): which shard of the data iterator to |
|
return (default: 0). |
|
num_workers (int, optional): how many subprocesses to use for data |
|
loading. 0 means the data will be loaded in the main process |
|
(default: 0). |
|
epoch (int, optional): the epoch to start the iterator from |
|
(default: 1). |
|
data_buffer_size (int, optional): number of batches to |
|
preload (default: 0). |
|
disable_iterator_cache (bool, optional): don't cache the |
|
EpochBatchIterator (ignores `FairseqTask::can_reuse_epoch_itr`) |
|
(default: False). |
|
skip_remainder_batch (bool, optional): if set, discard the last |
|
batch in each training epoch, as the last batch is often smaller than |
|
local_batch_size * distributed_word_size (default: ``True``). |
|
grouped_shuffling (bool, optional): group batches with each groups |
|
containing num_shards batches and shuffle groups. Reduces difference |
|
between sequence lengths among workers for batches sorted by length. |
|
update_epoch_batch_itr (bool optional): if true then donot use the cached |
|
batch iterator for the epoch |
|
|
|
Returns: |
|
~fairseq.iterators.EpochBatchIterator: a batched iterator over the |
|
given dataset split |
|
""" |
|
can_reuse_epoch_itr = ( |
|
not disable_iterator_cache |
|
and not update_epoch_batch_itr |
|
and self.can_reuse_epoch_itr(dataset) |
|
) |
|
if can_reuse_epoch_itr and dataset in self.dataset_to_epoch_iter: |
|
logger.debug("reusing EpochBatchIterator for epoch {}".format(epoch)) |
|
return self.dataset_to_epoch_iter[dataset] |
|
|
|
assert isinstance(dataset, FairseqDataset) |
|
|
|
|
|
dataset.set_epoch(epoch) |
|
|
|
|
|
with data_utils.numpy_seed(seed): |
|
indices = dataset.ordered_indices() |
|
|
|
|
|
if max_positions is not None: |
|
indices = self.filter_indices_by_size( |
|
indices, dataset, max_positions, ignore_invalid_inputs |
|
) |
|
|
|
|
|
batch_sampler = dataset.batch_by_size( |
|
indices, |
|
max_tokens=max_tokens, |
|
max_sentences=max_sentences, |
|
required_batch_size_multiple=required_batch_size_multiple, |
|
) |
|
|
|
reuse_dataloader = getattr(self.cfg, "reuse_dataloader", True) |
|
persistent_workers = getattr(self.cfg, "persistent_workers", False) |
|
|
|
|
|
epoch_iter = iterators.EpochBatchIterator( |
|
dataset=dataset, |
|
collate_fn=dataset.collater, |
|
batch_sampler=batch_sampler, |
|
seed=seed, |
|
num_shards=num_shards, |
|
shard_id=shard_id, |
|
num_workers=num_workers, |
|
epoch=epoch, |
|
buffer_size=data_buffer_size, |
|
skip_remainder_batch=skip_remainder_batch, |
|
grouped_shuffling=grouped_shuffling, |
|
reuse_dataloader=reuse_dataloader, |
|
persistent_workers=persistent_workers, |
|
) |
|
|
|
if can_reuse_epoch_itr: |
|
self.dataset_to_epoch_iter[dataset] = epoch_iter |
|
|
|
return epoch_iter |
|
|
|
def build_model(self, cfg: FairseqDataclass, from_checkpoint=False): |
|
""" |
|
Build the :class:`~fairseq.models.BaseFairseqModel` instance for this |
|
task. |
|
|
|
Args: |
|
cfg (FairseqDataclass): configuration object |
|
|
|
Returns: |
|
a :class:`~fairseq.models.BaseFairseqModel` instance |
|
""" |
|
from fairseq import models, quantization_utils |
|
|
|
model = models.build_model(cfg, self, from_checkpoint) |
|
model = quantization_utils.quantize_model_scalar(model, cfg) |
|
return model |
|
|
|
def build_criterion(self, cfg: DictConfig): |
|
""" |
|
Build the :class:`~fairseq.criterions.FairseqCriterion` instance for |
|
this task. |
|
|
|
Args: |
|
cfg (omegaconf.DictConfig): configration object |
|
|
|
Returns: |
|
a :class:`~fairseq.criterions.FairseqCriterion` instance |
|
""" |
|
from fairseq import criterions |
|
|
|
return criterions.build_criterion(cfg, self) |
|
|
|
def build_generator( |
|
self, |
|
models, |
|
args, |
|
seq_gen_cls=None, |
|
extra_gen_cls_kwargs=None, |
|
prefix_allowed_tokens_fn=None, |
|
): |
|
""" |
|
Build a :class:`~fairseq.SequenceGenerator` instance for this |
|
task. |
|
|
|
Args: |
|
models (List[~fairseq.models.FairseqModel]): ensemble of models |
|
args (fairseq.dataclass.configs.GenerationConfig): |
|
configuration object (dataclass) for generation |
|
extra_gen_cls_kwargs (Dict[str, Any]): extra options to pass |
|
through to SequenceGenerator |
|
prefix_allowed_tokens_fn (Callable[[int, torch.Tensor], List[int]]): |
|
If provided, this function constrains the beam search to |
|
allowed tokens only at each step. The provided function |
|
should take 2 arguments: the batch ID (`batch_id: int`) |
|
and a unidimensional tensor of token ids (`inputs_ids: |
|
torch.Tensor`). It has to return a `List[int]` with the |
|
allowed tokens for the next generation step conditioned |
|
on the previously generated tokens (`inputs_ids`) and |
|
the batch ID (`batch_id`). This argument is useful for |
|
constrained generation conditioned on the prefix, as |
|
described in "Autoregressive Entity Retrieval" |
|
(https://arxiv.org/abs/2010.00904) and |
|
https://github.com/facebookresearch/GENRE. |
|
""" |
|
if getattr(args, "score_reference", False): |
|
from fairseq.sequence_scorer import SequenceScorer |
|
|
|
return SequenceScorer( |
|
self.target_dictionary, |
|
compute_alignment=getattr(args, "print_alignment", False), |
|
) |
|
|
|
from fairseq.sequence_generator import ( |
|
SequenceGenerator, |
|
SequenceGeneratorWithAlignment, |
|
) |
|
|
|
|
|
sampling = getattr(args, "sampling", False) |
|
sampling_topk = getattr(args, "sampling_topk", -1) |
|
sampling_topp = getattr(args, "sampling_topp", -1.0) |
|
diverse_beam_groups = getattr(args, "diverse_beam_groups", -1) |
|
diverse_beam_strength = getattr(args, "diverse_beam_strength", 0.5) |
|
match_source_len = getattr(args, "match_source_len", False) |
|
diversity_rate = getattr(args, "diversity_rate", -1) |
|
constrained = getattr(args, "constraints", False) |
|
if prefix_allowed_tokens_fn is None: |
|
prefix_allowed_tokens_fn = getattr(args, "prefix_allowed_tokens_fn", None) |
|
if ( |
|
sum( |
|
int(cond) |
|
for cond in [ |
|
sampling, |
|
diverse_beam_groups > 0, |
|
match_source_len, |
|
diversity_rate > 0, |
|
] |
|
) |
|
> 1 |
|
): |
|
raise ValueError("Provided Search parameters are mutually exclusive.") |
|
assert sampling_topk < 0 or sampling, "--sampling-topk requires --sampling" |
|
assert sampling_topp < 0 or sampling, "--sampling-topp requires --sampling" |
|
|
|
if sampling: |
|
search_strategy = search.Sampling( |
|
self.target_dictionary, sampling_topk, sampling_topp |
|
) |
|
elif diverse_beam_groups > 0: |
|
search_strategy = search.DiverseBeamSearch( |
|
self.target_dictionary, diverse_beam_groups, diverse_beam_strength |
|
) |
|
elif match_source_len: |
|
|
|
|
|
|
|
search_strategy = search.LengthConstrainedBeamSearch( |
|
self.target_dictionary, |
|
min_len_a=1, |
|
min_len_b=0, |
|
max_len_a=1, |
|
max_len_b=0, |
|
) |
|
elif diversity_rate > -1: |
|
search_strategy = search.DiverseSiblingsSearch( |
|
self.target_dictionary, diversity_rate |
|
) |
|
elif constrained: |
|
search_strategy = search.LexicallyConstrainedBeamSearch( |
|
self.target_dictionary, args.constraints |
|
) |
|
elif prefix_allowed_tokens_fn: |
|
search_strategy = search.PrefixConstrainedBeamSearch( |
|
self.target_dictionary, prefix_allowed_tokens_fn |
|
) |
|
else: |
|
search_strategy = search.BeamSearch(self.target_dictionary) |
|
|
|
extra_gen_cls_kwargs = extra_gen_cls_kwargs or {} |
|
if seq_gen_cls is None: |
|
if getattr(args, "print_alignment", False): |
|
seq_gen_cls = SequenceGeneratorWithAlignment |
|
extra_gen_cls_kwargs["print_alignment"] = args.print_alignment |
|
else: |
|
seq_gen_cls = SequenceGenerator |
|
|
|
return seq_gen_cls( |
|
models, |
|
self.target_dictionary, |
|
beam_size=getattr(args, "beam", 5), |
|
max_len_a=getattr(args, "max_len_a", 0), |
|
max_len_b=getattr(args, "max_len_b", 200), |
|
min_len=getattr(args, "min_len", 1), |
|
normalize_scores=(not getattr(args, "unnormalized", False)), |
|
len_penalty=getattr(args, "lenpen", 1), |
|
unk_penalty=getattr(args, "unkpen", 0), |
|
temperature=getattr(args, "temperature", 1.0), |
|
match_source_len=getattr(args, "match_source_len", False), |
|
no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0), |
|
search_strategy=search_strategy, |
|
**extra_gen_cls_kwargs, |
|
) |
|
|
|
def train_step( |
|
self, sample, model, criterion, optimizer, update_num, ignore_grad=False |
|
): |
|
""" |
|
Do forward and backward, and return the loss as computed by *criterion* |
|
for the given *model* and *sample*. |
|
|
|
Args: |
|
sample (dict): the mini-batch. The format is defined by the |
|
:class:`~fairseq.data.FairseqDataset`. |
|
model (~fairseq.models.BaseFairseqModel): the model |
|
criterion (~fairseq.criterions.FairseqCriterion): the criterion |
|
optimizer (~fairseq.optim.FairseqOptimizer): the optimizer |
|
update_num (int): the current update |
|
ignore_grad (bool): multiply loss by 0 if this is set to True |
|
|
|
Returns: |
|
tuple: |
|
- the loss |
|
- the sample size, which is used as the denominator for the |
|
gradient |
|
- logging outputs to display while training |
|
""" |
|
model.train() |
|
model.set_num_updates(update_num) |
|
with torch.autograd.profiler.record_function("forward"): |
|
with torch.cuda.amp.autocast(enabled=(isinstance(optimizer, AMPOptimizer))): |
|
loss, sample_size, logging_output = criterion(model, sample) |
|
if ignore_grad: |
|
loss *= 0 |
|
with torch.autograd.profiler.record_function("backward"): |
|
optimizer.backward(loss) |
|
return loss, sample_size, logging_output |
|
|
|
def valid_step(self, sample, model, criterion): |
|
model.eval() |
|
with torch.no_grad(): |
|
loss, sample_size, logging_output = criterion(model, sample) |
|
return loss, sample_size, logging_output |
|
|
|
def optimizer_step(self, optimizer, model, update_num): |
|
optimizer.step() |
|
|
|
def build_dataset_for_inference( |
|
self, src_tokens: List[torch.Tensor], src_lengths: List[int], **kwargs |
|
) -> torch.utils.data.Dataset: |
|
raise NotImplementedError |
|
|
|
def inference_step( |
|
self, generator, models, sample, prefix_tokens=None, constraints=None |
|
): |
|
with torch.no_grad(): |
|
return generator.generate( |
|
models, sample, prefix_tokens=prefix_tokens, constraints=constraints |
|
) |
|
|
|
def begin_epoch(self, epoch, model): |
|
"""Hook function called before the start of each epoch.""" |
|
pass |
|
|
|
def begin_valid_epoch(self, epoch, model): |
|
"""Hook function called before the start of each validation epoch.""" |
|
pass |
|
|
|
def aggregate_logging_outputs(self, logging_outputs, criterion): |
|
"""[deprecated] Aggregate logging outputs from data parallel training.""" |
|
utils.deprecation_warning( |
|
"The aggregate_logging_outputs API is deprecated. " |
|
"Please use the reduce_metrics API instead." |
|
) |
|
with metrics.aggregate() as agg: |
|
self.reduce_metrics(logging_outputs, criterion) |
|
return agg.get_smoothed_values() |
|
|
|
def reduce_metrics(self, logging_outputs, criterion): |
|
"""Aggregate logging outputs from data parallel training.""" |
|
|
|
base_func = FairseqTask.aggregate_logging_outputs |
|
self_func = getattr(self, "aggregate_logging_outputs").__func__ |
|
if self_func is not base_func: |
|
utils.deprecation_warning( |
|
"Tasks should implement the reduce_metrics API. " |
|
"Falling back to deprecated aggregate_logging_outputs API." |
|
) |
|
agg_logging_outputs = self.aggregate_logging_outputs( |
|
logging_outputs, criterion |
|
) |
|
for k, v in agg_logging_outputs.items(): |
|
metrics.log_scalar(k, v) |
|
return |
|
|
|
if not any("ntokens" in log for log in logging_outputs): |
|
warnings.warn( |
|
"ntokens not found in Criterion logging outputs, cannot log wpb or wps" |
|
) |
|
else: |
|
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) |
|
metrics.log_scalar("wpb", ntokens, priority=180, round=1) |
|
metrics.log_speed("wps", ntokens, priority=90, round=1) |
|
|
|
if not any("nsentences" in log for log in logging_outputs): |
|
warnings.warn( |
|
"nsentences not found in Criterion logging outputs, cannot log bsz" |
|
) |
|
else: |
|
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) |
|
metrics.log_scalar("bsz", nsentences, priority=190, round=1) |
|
|
|
criterion.__class__.reduce_metrics(logging_outputs) |
|
|
|
def state_dict(self): |
|
if self.state is not None: |
|
return self.state.state_dict |
|
return {} |
|
|
|
def load_state_dict(self, state_dict: Dict[str, Any]): |
|
if self.state is not None: |
|
self.state.merge_state_dict(state_dict) |
|
|
|
def max_positions(self): |
|
"""Return the max input length allowed by the task.""" |
|
return None |
|
|
|
@property |
|
def source_dictionary(self): |
|
"""Return the source :class:`~fairseq.data.Dictionary` (if applicable |
|
for this task).""" |
|
raise NotImplementedError |
|
|
|
@property |
|
def target_dictionary(self): |
|
"""Return the target :class:`~fairseq.data.Dictionary` (if applicable |
|
for this task).""" |
|
raise NotImplementedError |
|
|
|
def build_tokenizer(self, args): |
|
"""Build the pre-tokenizer for this task.""" |
|
return encoders.build_tokenizer(args) |
|
|
|
def build_bpe(self, args): |
|
"""Build the tokenizer for this task.""" |
|
return encoders.build_bpe(args) |
|
|
|
def get_interactive_tokens_and_lengths(self, lines, encode_fn): |
|
tokens = [ |
|
self.source_dictionary.encode_line( |
|
encode_fn(src_str), add_if_not_exist=False |
|
).long() |
|
for src_str in lines |
|
] |
|
lengths = [t.numel() for t in tokens] |
|
return tokens, lengths |
|
|
|
|
|
class LegacyFairseqTask(FairseqTask): |
|
def __init__(self, args: Namespace): |
|
super().__init__(None) |
|
self.args = args |
|
self.datasets = {} |
|
self.dataset_to_epoch_iter = {} |
|
|
|
@classmethod |
|
def setup_task(cls, args: Namespace, **kwargs): |
|
"""Setup the task (e.g., load dictionaries). |
|
|
|
Args: |
|
args (argparse.Namespace): parsed command-line arguments |
|
""" |
|
return cls(args, **kwargs) |
|
|
|
def has_sharded_data(self, split): |
|
return os.pathsep in getattr(self.args, "data", "") |
|
|
|
def build_model(self, args: Namespace, from_checkpoint=False): |
|
""" |
|
Build the :class:`~fairseq.models.BaseFairseqModel` instance for this |
|
task. |
|
|
|
Args: |
|
args (argparse.Namespace): parsed command-line arguments |
|
|
|
Returns: |
|
a :class:`~fairseq.models.BaseFairseqModel` instance |
|
""" |
|
from fairseq import models, quantization_utils |
|
|
|
model = models.build_model(args, self, from_checkpoint) |
|
model = quantization_utils.quantize_model_scalar(model, args) |
|
return model |
|
|
|
def build_criterion(self, args: Namespace): |
|
""" |
|
Build the :class:`~fairseq.criterions.FairseqCriterion` instance for |
|
this task. |
|
|
|
Args: |
|
args (argparse.Namespace): parsed command-line arguments |
|
|
|
Returns: |
|
a :class:`~fairseq.criterions.FairseqCriterion` instance |
|
""" |
|
from fairseq import criterions |
|
|
|
return criterions.build_criterion(args, self) |
|
|