extrasneo / modules /voice_conversion /rvc /custom_pitch_extraction.py
Reiner4's picture
Upload 539 files
65fe463
import gc
import os.path
import numpy as np
import parselmouth
import torch
import pyworld
import torchcrepe
from scipy import signal
from torch import Tensor
def get_f0_crepe_computation(
x,
f0_min,
f0_max,
p_len,
sr,
hop_length=128,
# 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
model="full", # Either use crepe-tiny "tiny" or crepe "full". Default is full
):
x = x.astype(np.float32) # fixes the F.conv2D exception. We needed to convert double to float.
x /= np.quantile(np.abs(x), 0.999)
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio = torch.from_numpy(x).to(torch_device, copy=True)
audio = torch.unsqueeze(audio, dim=0)
if audio.ndim == 2 and audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True).detach()
audio = audio.detach()
# print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
pitch: torch.Tensor = torchcrepe.predict(
audio,
sr,
hop_length,
f0_min,
f0_max,
model,
batch_size=hop_length * 2,
device=torch_device,
pad=True
)
p_len = p_len or x.shape[0] // hop_length
# Resize the pitch for final f0
source = np.array(pitch.squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * p_len, len(source)) / p_len,
np.arange(0, len(source)),
source
)
f0 = np.nan_to_num(target)
return f0 # Resized f0
def get_mangio_crepe_f0(x, f0_min, f0_max, p_len, sr, crepe_hop_length, model='full'):
# print("Performing crepe pitch extraction. (EXPERIMENTAL)")
# print("CREPE PITCH EXTRACTION HOP LENGTH: " + str(crepe_hop_length))
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
torch_device_index = 0
torch_device = None
if torch.cuda.is_available():
torch_device = torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}")
elif torch.backends.mps.is_available():
torch_device = torch.device("mps")
else:
torch_device = torch.device("cpu")
audio = torch.from_numpy(x).to(torch_device, copy=True)
audio = torch.unsqueeze(audio, dim=0)
if audio.ndim == 2 and audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True).detach()
audio = audio.detach()
# print(
# "Initiating f0 Crepe Feature Extraction with an extraction_crepe_hop_length of: " +
# str(crepe_hop_length)
# )
# Pitch prediction for pitch extraction
pitch: Tensor = torchcrepe.predict(
audio,
sr,
crepe_hop_length,
f0_min,
f0_max,
model,
batch_size=crepe_hop_length * 2,
device=torch_device,
pad=True
)
p_len = p_len or x.shape[0] // crepe_hop_length
# Resize the pitch
source = np.array(pitch.squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * p_len, len(source)) / p_len,
np.arange(0, len(source)),
source
)
return np.nan_to_num(target)
def pitch_extract(f0_method, x, f0_min, f0_max, p_len, time_step, sr, window, crepe_hop_length, filter_radius=3):
f0s = []
f0 = np.zeros(p_len)
for method in f0_method if isinstance(f0_method, list) else [f0_method]:
if method == "pm":
f0 = (
parselmouth.Sound(x, sr)
.to_pitch_ac(
time_step=time_step / 1000,
voicing_threshold=0.6,
pitch_floor=f0_min,
pitch_ceiling=f0_max,
)
.selected_array["frequency"]
)
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
f0 = np.pad(
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
)
elif method in ['harvest', 'dio']:
if method == 'harvest':
f0, t = pyworld.harvest(
x.astype(np.double),
fs=sr,
f0_ceil=f0_max,
f0_floor=f0_min,
frame_period=10,
)
elif method == "dio":
f0, t = pyworld.dio(
x.astype(np.double),
fs=sr,
f0_ceil=f0_max,
f0_floor=f0_min,
frame_period=10,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, sr)
elif method == "torchcrepe":
f0 = get_f0_crepe_computation(x, f0_min, f0_max, p_len, sr, crepe_hop_length)
elif method == "torchcrepe tiny":
f0 = get_f0_crepe_computation(x, f0_min, f0_max, p_len, sr, crepe_hop_length, "tiny")
elif method == "mangio-crepe":
f0 = get_mangio_crepe_f0(x, f0_min, f0_max, p_len, sr, crepe_hop_length)
elif method == "mangio-crepe tiny":
f0 = get_mangio_crepe_f0(x, f0_min, f0_max, p_len, sr, crepe_hop_length, 'tiny')
elif method == "rmvpe":
rmvpe_model_path = os.path.join('data', 'models', 'rmvpe')
rmvpe_model_file = os.path.join(rmvpe_model_path, 'rmvpe.pt')
if not os.path.isfile(rmvpe_model_file):
import huggingface_hub
rmvpe_model_file = huggingface_hub.hf_hub_download('lj1995/VoiceConversionWebUI', 'rmvpe.pt', local_dir=rmvpe_model_path, local_dir_use_symlinks=False)
from modules.voice_conversion.rvc.rmvpe import RMVPE
print("loading rmvpe model")
model_rmvpe = RMVPE(rmvpe_model_file, is_half=True, device=None)
f0 = model_rmvpe.infer_from_audio(x, thred=0.03)
del model_rmvpe
torch.cuda.empty_cache()
gc.collect()
f0s.append(f0)
if not f0s:
f0s = [f0]
f0s_new = []
for f0_val in f0s:
_len = f0_val.shape[0]
if _len == p_len:
f0s_new.append(f0)
continue
if _len > p_len:
f0 = f0[:p_len]
f0s_new.append(f0)
continue
if _len < p_len:
print('WARNING: len < p_len, skipping this f0')
f0 = np.nanmedian(np.stack(f0s_new, axis=0), axis=0)
if filter_radius >= 2:
f0 = signal.medfilt(f0, filter_radius)
return f0