|
|
|
""" |
|
Copyright: RVC-Project |
|
License: MIT |
|
""" |
|
|
|
import gc |
|
import os |
|
import traceback |
|
|
|
import ffmpeg |
|
import numpy as np |
|
import torch.cuda |
|
import argparse |
|
import torch |
|
import io |
|
from multiprocessing import cpu_count |
|
from fairseq import checkpoint_utils |
|
|
|
from modules.voice_conversion.rvc.hubert.hubert_manager import HuBERTManager |
|
from modules.voice_conversion.rvc.vc_infer_pipeline import VC |
|
|
|
from modules.voice_conversion.rvc.infer_pack.models import ( |
|
SynthesizerTrnMs256NSFsid, |
|
SynthesizerTrnMs256NSFsid_nono, |
|
SynthesizerTrnMs768NSFsid, |
|
SynthesizerTrnMs768NSFsid_nono, |
|
) |
|
|
|
hubert_model = None |
|
weight_root = os.path.join('') |
|
|
|
|
|
def config_file_change_fp32(): |
|
try: |
|
for config_file in ["32k.json", "40k.json", "48k.json"]: |
|
with open(f"configs/{config_file}", "r") as f: |
|
strr = f.read().replace("true", "false") |
|
with open(f"configs/{config_file}", "w") as f: |
|
f.write(strr) |
|
with open("trainset_preprocess_pipeline_print.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("trainset_preprocess_pipeline_print.py", "w") as f: |
|
f.write(strr) |
|
except Exception as e: |
|
print(f'exception in config_file_change_fp32: {e}') |
|
|
|
|
|
class Config: |
|
def __init__(self): |
|
self.device = "cuda:0" |
|
self.is_half = True |
|
self.n_cpu = 0 |
|
self.gpu_name = None |
|
self.gpu_mem = None |
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
|
|
|
def device_config(self) -> tuple: |
|
if torch.cuda.is_available(): |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
if ( |
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) |
|
or "P40" in self.gpu_name.upper() |
|
or "1060" in self.gpu_name |
|
or "1070" in self.gpu_name |
|
or "1080" in self.gpu_name |
|
): |
|
print("Forcing full precision for 16/10 series cards.") |
|
self.is_half = False |
|
config_file_change_fp32() |
|
else: |
|
self.gpu_name = None |
|
self.gpu_mem = int( |
|
torch.cuda.get_device_properties(i_device).total_memory |
|
/ 1024 |
|
/ 1024 |
|
/ 1024 |
|
+ 0.4 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
elif torch.backends.mps.is_available(): |
|
print("No compatible GPU found, using MPS for inference.") |
|
self.device = "mps" |
|
self.is_half = False |
|
config_file_change_fp32() |
|
else: |
|
print("No compatible GPU found, using CPU for inference.") |
|
self.device = "cpu" |
|
self.is_half = False |
|
config_file_change_fp32() |
|
|
|
if self.n_cpu == 0: |
|
self.n_cpu = cpu_count() |
|
|
|
if self.is_half: |
|
|
|
x_pad = 3 |
|
x_query = 10 |
|
x_center = 60 |
|
x_max = 65 |
|
else: |
|
|
|
x_pad = 1 |
|
x_query = 6 |
|
x_center = 38 |
|
x_max = 41 |
|
|
|
if self.gpu_mem != None and self.gpu_mem <= 4: |
|
x_pad = 1 |
|
x_query = 5 |
|
x_center = 30 |
|
x_max = 32 |
|
|
|
return x_pad, x_query, x_center, x_max |
|
|
|
|
|
config = Config() |
|
|
|
|
|
def load_hubert(): |
|
global hubert_model |
|
if not hubert_model: |
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( |
|
[HuBERTManager.make_sure_hubert_rvc_installed()], |
|
suffix="", |
|
) |
|
hubert_model = models[0] |
|
hubert_model = hubert_model.to(config.device) |
|
if config.is_half: |
|
hubert_model = hubert_model.half() |
|
else: |
|
hubert_model = hubert_model.float() |
|
hubert_model.eval() |
|
|
|
|
|
def load_audio(audio_source, sr): |
|
try: |
|
if isinstance(audio_source, str): |
|
audio_input = audio_source.strip(" ").strip('"').strip("\n").strip('"') |
|
out, _ = ( |
|
ffmpeg.input(audio_input, threads=0) |
|
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr) |
|
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) |
|
) |
|
elif isinstance(audio_source, io.BytesIO): |
|
audio_source.seek(0) |
|
out, _ = ( |
|
ffmpeg.input("pipe:0", threads=0) |
|
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr) |
|
.run(input=audio_source.read(), cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) |
|
) |
|
else: |
|
raise ValueError("Invalid audio source") |
|
|
|
except Exception as e: |
|
raise RuntimeError(f"Failed to load audio: {e}") |
|
|
|
return np.frombuffer(out, np.float32).flatten() |
|
|
|
|
|
vc = None |
|
rvc_model_name = None |
|
maximum = 0 |
|
|
|
|
|
def unload_rvc(): |
|
global vc, rvc_model_name |
|
rvc_model_name = None |
|
vc = None |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
def load_rvc(model): |
|
global vc, rvc_model_name, maximum |
|
if model != rvc_model_name: |
|
unload_rvc() |
|
rvc_model_name = model |
|
|
|
maximum = get_vc(model)['maximum'] |
|
return maximum |
|
|
|
|
|
def vc_single( |
|
sid, |
|
input_audio_path, |
|
f0_up_key, |
|
f0_file, |
|
f0_method, |
|
file_index, |
|
file_index2, |
|
|
|
index_rate, |
|
filter_radius, |
|
resample_sr, |
|
rms_mix_rate, |
|
protect, |
|
crepe_hop_length=128 |
|
): |
|
global tgt_sr, net_g, vc, hubert_model, version |
|
if input_audio_path is None: |
|
return "You need to upload an audio", None |
|
f0_up_key = int(f0_up_key) |
|
try: |
|
audio = load_audio(input_audio_path, 16000) |
|
audio_max = np.abs(audio).max() / 0.95 |
|
if audio_max > 1: |
|
audio /= audio_max |
|
times = [0, 0, 0] |
|
if hubert_model is None: |
|
load_hubert() |
|
if_f0 = cpt.get("f0", 1) |
|
file_index = ( |
|
( |
|
file_index.strip(" ") |
|
.strip('"') |
|
.strip("\n") |
|
.strip('"') |
|
.strip(" ") |
|
.replace("trained", "added") |
|
) |
|
if file_index != "" |
|
else file_index2 |
|
) |
|
|
|
|
|
|
|
audio_opt = vc.pipeline( |
|
hubert_model, |
|
net_g, |
|
sid, |
|
audio, |
|
input_audio_path, |
|
times, |
|
f0_up_key, |
|
f0_method, |
|
file_index, |
|
|
|
index_rate, |
|
if_f0, |
|
filter_radius, |
|
tgt_sr, |
|
resample_sr, |
|
rms_mix_rate, |
|
version, |
|
protect, |
|
f0_file=f0_file, |
|
crepe_hop_length=crepe_hop_length |
|
) |
|
if resample_sr >= 16000 and tgt_sr != resample_sr: |
|
tgt_sr = resample_sr |
|
index_info = ( |
|
"Using index:%s." % file_index |
|
if os.path.exists(file_index) |
|
else "Index not used." |
|
) |
|
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % ( |
|
index_info, |
|
times[0], |
|
times[1], |
|
times[2], |
|
), (tgt_sr, audio_opt) |
|
except: |
|
info = traceback.format_exc() |
|
print(info) |
|
return info, (None, None) |
|
|
|
|
|
|
|
def get_vc(sid): |
|
global n_spk, tgt_sr, net_g, vc, cpt, version |
|
if sid == "" or sid == []: |
|
global hubert_model |
|
if hubert_model is not None: |
|
print("clean_empty_cache") |
|
del net_g, n_spk, vc, hubert_model, tgt_sr |
|
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g, cpt |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
cpt = None |
|
return {"visible": False, "__type__": "update"} |
|
|
|
person = sid |
|
print("loading %s" % person) |
|
cpt = torch.load(person, map_location="cpu") |
|
tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
|
|
del net_g.enc_q |
|
print(net_g.load_state_dict(cpt["weight"], strict=False)) |
|
net_g.eval().to(config.device) |
|
if config.is_half: |
|
net_g = net_g.half() |
|
else: |
|
net_g = net_g.float() |
|
vc = VC(tgt_sr, config) |
|
n_spk = cpt["config"][-3] |
|
return {"visible": True, "maximum": n_spk, "__type__": "update"} |
|
|
|
|
|
def change_info(path, info, name): |
|
try: |
|
ckpt = torch.load(path, map_location="cpu") |
|
ckpt["info"] = info |
|
if name == "": |
|
name = os.path.basename(path) |
|
torch.save(ckpt, "weights/%s" % name) |
|
return "Success." |
|
except: |
|
return traceback.format_exc() |
|
|
|
|
|
def change_info_(ckpt_path): |
|
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")): |
|
return |
|
try: |
|
with open( |
|
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r" |
|
) as f: |
|
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) |
|
sr, f0 = info["sample_rate"], info["if_f0"] |
|
version = "v2" if ("version" in info and info["version"] == "v2") else "v1" |
|
return sr, str(f0), version |
|
except: |
|
traceback.print_exc() |
|
|