Spaces:
Sleeping
Sleeping
Regino
commited on
Commit
Β·
0e876c8
1
Parent(s):
7ef995c
first commit
Browse files- Train Model.ipynb +303 -0
- app.py +154 -0
- confusion_matrix.png +0 -0
- requirements.txt +8 -0
- sentiment_distribution.png +0 -0
- sentiment_model.pkl +3 -0
- tfidf_vectorizer.pkl +3 -0
- twitter_training.csv +0 -0
- twitter_validation.csv +0 -0
Train Model.ipynb
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"Dataset from hugging face"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 5,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [
|
15 |
+
{
|
16 |
+
"name": "stdout",
|
17 |
+
"output_type": "stream",
|
18 |
+
"text": [
|
19 |
+
" id place label \\\n",
|
20 |
+
"0 2401 Borderlands Positive \n",
|
21 |
+
"1 2401 Borderlands Positive \n",
|
22 |
+
"2 2401 Borderlands Positive \n",
|
23 |
+
"3 2401 Borderlands Positive \n",
|
24 |
+
"4 2401 Borderlands Positive \n",
|
25 |
+
"\n",
|
26 |
+
" text \n",
|
27 |
+
"0 im getting on borderlands and i will murder yo... \n",
|
28 |
+
"1 I am coming to the borders and I will kill you... \n",
|
29 |
+
"2 im getting on borderlands and i will kill you ... \n",
|
30 |
+
"3 im coming on borderlands and i will murder you... \n",
|
31 |
+
"4 im getting on borderlands 2 and i will murder ... \n"
|
32 |
+
]
|
33 |
+
}
|
34 |
+
],
|
35 |
+
"source": [
|
36 |
+
"import pandas as pd \n",
|
37 |
+
"\n",
|
38 |
+
"# Define column names manually\n",
|
39 |
+
"column_names = ['id',\"place\",\"label\", \"text\"] # Change this based on your dataset\n",
|
40 |
+
"\n",
|
41 |
+
"# Load training dataset\n",
|
42 |
+
"train_df = pd.read_csv(\"twitter_training.csv\", names=column_names, header=None)\n",
|
43 |
+
"\n",
|
44 |
+
"# Load test dataset\n",
|
45 |
+
"test_df = pd.read_csv(\"twitter_validation.csv\", names=column_names, header=None)\n",
|
46 |
+
"\n",
|
47 |
+
"# Display first few rows\n",
|
48 |
+
"print(train_df.head())\n"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": 10,
|
54 |
+
"metadata": {},
|
55 |
+
"outputs": [
|
56 |
+
{
|
57 |
+
"name": "stderr",
|
58 |
+
"output_type": "stream",
|
59 |
+
"text": [
|
60 |
+
"[nltk_data] Downloading package stopwords to C:\\Users\\Regino Balogo\n",
|
61 |
+
"[nltk_data] Jr\\AppData\\Roaming\\nltk_data...\n",
|
62 |
+
"[nltk_data] Package stopwords is already up-to-date!\n"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"name": "stdout",
|
67 |
+
"output_type": "stream",
|
68 |
+
"text": [
|
69 |
+
"Sample cleaned text:\n"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"data": {
|
74 |
+
"text/html": [
|
75 |
+
"<div>\n",
|
76 |
+
"<style scoped>\n",
|
77 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
78 |
+
" vertical-align: middle;\n",
|
79 |
+
" }\n",
|
80 |
+
"\n",
|
81 |
+
" .dataframe tbody tr th {\n",
|
82 |
+
" vertical-align: top;\n",
|
83 |
+
" }\n",
|
84 |
+
"\n",
|
85 |
+
" .dataframe thead th {\n",
|
86 |
+
" text-align: right;\n",
|
87 |
+
" }\n",
|
88 |
+
"</style>\n",
|
89 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
90 |
+
" <thead>\n",
|
91 |
+
" <tr style=\"text-align: right;\">\n",
|
92 |
+
" <th></th>\n",
|
93 |
+
" <th>text</th>\n",
|
94 |
+
" <th>clean_text</th>\n",
|
95 |
+
" </tr>\n",
|
96 |
+
" </thead>\n",
|
97 |
+
" <tbody>\n",
|
98 |
+
" <tr>\n",
|
99 |
+
" <th>0</th>\n",
|
100 |
+
" <td>im getting on borderlands and i will murder yo...</td>\n",
|
101 |
+
" <td>im getting borderlands murder</td>\n",
|
102 |
+
" </tr>\n",
|
103 |
+
" <tr>\n",
|
104 |
+
" <th>1</th>\n",
|
105 |
+
" <td>I am coming to the borders and I will kill you...</td>\n",
|
106 |
+
" <td>coming borders kill</td>\n",
|
107 |
+
" </tr>\n",
|
108 |
+
" <tr>\n",
|
109 |
+
" <th>2</th>\n",
|
110 |
+
" <td>im getting on borderlands and i will kill you ...</td>\n",
|
111 |
+
" <td>im getting borderlands kill</td>\n",
|
112 |
+
" </tr>\n",
|
113 |
+
" <tr>\n",
|
114 |
+
" <th>3</th>\n",
|
115 |
+
" <td>im coming on borderlands and i will murder you...</td>\n",
|
116 |
+
" <td>im coming borderlands murder</td>\n",
|
117 |
+
" </tr>\n",
|
118 |
+
" <tr>\n",
|
119 |
+
" <th>4</th>\n",
|
120 |
+
" <td>im getting on borderlands 2 and i will murder ...</td>\n",
|
121 |
+
" <td>im getting borderlands 2 murder</td>\n",
|
122 |
+
" </tr>\n",
|
123 |
+
" </tbody>\n",
|
124 |
+
"</table>\n",
|
125 |
+
"</div>"
|
126 |
+
],
|
127 |
+
"text/plain": [
|
128 |
+
" text \\\n",
|
129 |
+
"0 im getting on borderlands and i will murder yo... \n",
|
130 |
+
"1 I am coming to the borders and I will kill you... \n",
|
131 |
+
"2 im getting on borderlands and i will kill you ... \n",
|
132 |
+
"3 im coming on borderlands and i will murder you... \n",
|
133 |
+
"4 im getting on borderlands 2 and i will murder ... \n",
|
134 |
+
"\n",
|
135 |
+
" clean_text \n",
|
136 |
+
"0 im getting borderlands murder \n",
|
137 |
+
"1 coming borders kill \n",
|
138 |
+
"2 im getting borderlands kill \n",
|
139 |
+
"3 im coming borderlands murder \n",
|
140 |
+
"4 im getting borderlands 2 murder "
|
141 |
+
]
|
142 |
+
},
|
143 |
+
"metadata": {},
|
144 |
+
"output_type": "display_data"
|
145 |
+
}
|
146 |
+
],
|
147 |
+
"source": [
|
148 |
+
"import re\n",
|
149 |
+
"import nltk\n",
|
150 |
+
"from nltk.corpus import stopwords\n",
|
151 |
+
"\n",
|
152 |
+
"# Download stopwords if not already downloaded\n",
|
153 |
+
"nltk.download(\"stopwords\")\n",
|
154 |
+
"stop_words = set(stopwords.words(\"english\"))\n",
|
155 |
+
"\n",
|
156 |
+
"# Function to clean text\n",
|
157 |
+
"def preprocess_text(text):\n",
|
158 |
+
" if isinstance(text, float): # Handle missing values\n",
|
159 |
+
" return \"\"\n",
|
160 |
+
" \n",
|
161 |
+
" text = text.lower() # Convert to lowercase\n",
|
162 |
+
" text = re.sub(r\"\\W\", \" \", text) # Remove special characters\n",
|
163 |
+
" text = re.sub(r\"\\s+\", \" \", text).strip() # Remove extra spaces\n",
|
164 |
+
" text = \" \".join([word for word in text.split() if word not in stop_words]) # Remove stopwords\n",
|
165 |
+
" return text\n",
|
166 |
+
"\n",
|
167 |
+
"# Apply preprocessing to the text column\n",
|
168 |
+
"train_df[\"clean_text\"] = train_df[\"text\"].apply(preprocess_text)\n",
|
169 |
+
"test_df[\"clean_text\"] = test_df[\"text\"].apply(preprocess_text)\n",
|
170 |
+
"\n",
|
171 |
+
"# Display a sample of the cleaned text\n",
|
172 |
+
"print(\"Sample cleaned text:\")\n",
|
173 |
+
"display(train_df[[\"text\", \"clean_text\"]].head())\n"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"execution_count": 11,
|
179 |
+
"metadata": {},
|
180 |
+
"outputs": [
|
181 |
+
{
|
182 |
+
"name": "stdout",
|
183 |
+
"output_type": "stream",
|
184 |
+
"text": [
|
185 |
+
"TF-IDF vectorization complete! β
\n",
|
186 |
+
"Training data shape: (74682, 5000)\n",
|
187 |
+
"Testing data shape: (1000, 5000)\n"
|
188 |
+
]
|
189 |
+
}
|
190 |
+
],
|
191 |
+
"source": [
|
192 |
+
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
193 |
+
"\n",
|
194 |
+
"# Initialize TF-IDF Vectorizer\n",
|
195 |
+
"vectorizer = TfidfVectorizer(max_features=5000) # Limit to 5000 most important words\n",
|
196 |
+
"\n",
|
197 |
+
"# Fit and transform training data, then transform test data\n",
|
198 |
+
"X_train = vectorizer.fit_transform(train_df[\"clean_text\"])\n",
|
199 |
+
"X_test = vectorizer.transform(test_df[\"clean_text\"])\n",
|
200 |
+
"\n",
|
201 |
+
"# Extract labels (assuming the sentiment column is named \"label\")\n",
|
202 |
+
"y_train = train_df[\"label\"]\n",
|
203 |
+
"y_test = test_df[\"label\"]\n",
|
204 |
+
"\n",
|
205 |
+
"print(\"TF-IDF vectorization complete! β
\")\n",
|
206 |
+
"print(f\"Training data shape: {X_train.shape}\")\n",
|
207 |
+
"print(f\"Testing data shape: {X_test.shape}\")\n"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "code",
|
212 |
+
"execution_count": 12,
|
213 |
+
"metadata": {},
|
214 |
+
"outputs": [
|
215 |
+
{
|
216 |
+
"name": "stdout",
|
217 |
+
"output_type": "stream",
|
218 |
+
"text": [
|
219 |
+
"Model Accuracy: 0.8120\n",
|
220 |
+
"\n",
|
221 |
+
"Classification Report:\n",
|
222 |
+
" precision recall f1-score support\n",
|
223 |
+
"\n",
|
224 |
+
" Irrelevant 0.82 0.73 0.77 172\n",
|
225 |
+
" Negative 0.78 0.89 0.83 266\n",
|
226 |
+
" Neutral 0.85 0.76 0.80 285\n",
|
227 |
+
" Positive 0.81 0.84 0.82 277\n",
|
228 |
+
"\n",
|
229 |
+
" accuracy 0.81 1000\n",
|
230 |
+
" macro avg 0.81 0.81 0.81 1000\n",
|
231 |
+
"weighted avg 0.81 0.81 0.81 1000\n",
|
232 |
+
"\n"
|
233 |
+
]
|
234 |
+
}
|
235 |
+
],
|
236 |
+
"source": [
|
237 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
238 |
+
"from sklearn.metrics import accuracy_score, classification_report\n",
|
239 |
+
"\n",
|
240 |
+
"# Initialize and train the model\n",
|
241 |
+
"model = LogisticRegression(max_iter=1000) # Increase iterations to ensure convergence\n",
|
242 |
+
"model.fit(X_train, y_train)\n",
|
243 |
+
"\n",
|
244 |
+
"# Make predictions on the test set\n",
|
245 |
+
"y_pred = model.predict(X_test)\n",
|
246 |
+
"\n",
|
247 |
+
"# Evaluate the model\n",
|
248 |
+
"accuracy = accuracy_score(y_test, y_pred)\n",
|
249 |
+
"print(f\"Model Accuracy: {accuracy:.4f}\")\n",
|
250 |
+
"\n",
|
251 |
+
"# Display classification report\n",
|
252 |
+
"print(\"\\nClassification Report:\")\n",
|
253 |
+
"print(classification_report(y_test, y_pred))\n"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"cell_type": "code",
|
258 |
+
"execution_count": 13,
|
259 |
+
"metadata": {},
|
260 |
+
"outputs": [
|
261 |
+
{
|
262 |
+
"name": "stdout",
|
263 |
+
"output_type": "stream",
|
264 |
+
"text": [
|
265 |
+
"Model and vectorizer saved successfully! β
\n"
|
266 |
+
]
|
267 |
+
}
|
268 |
+
],
|
269 |
+
"source": [
|
270 |
+
"import joblib\n",
|
271 |
+
"\n",
|
272 |
+
"# Save the trained model\n",
|
273 |
+
"joblib.dump(model, \"sentiment_model.pkl\")\n",
|
274 |
+
"\n",
|
275 |
+
"# Save the TF-IDF vectorizer\n",
|
276 |
+
"joblib.dump(vectorizer, \"tfidf_vectorizer.pkl\")\n",
|
277 |
+
"\n",
|
278 |
+
"print(\"Model and vectorizer saved successfully! β
\")\n"
|
279 |
+
]
|
280 |
+
}
|
281 |
+
],
|
282 |
+
"metadata": {
|
283 |
+
"kernelspec": {
|
284 |
+
"display_name": "Python 3",
|
285 |
+
"language": "python",
|
286 |
+
"name": "python3"
|
287 |
+
},
|
288 |
+
"language_info": {
|
289 |
+
"codemirror_mode": {
|
290 |
+
"name": "ipython",
|
291 |
+
"version": 3
|
292 |
+
},
|
293 |
+
"file_extension": ".py",
|
294 |
+
"mimetype": "text/x-python",
|
295 |
+
"name": "python",
|
296 |
+
"nbconvert_exporter": "python",
|
297 |
+
"pygments_lexer": "ipython3",
|
298 |
+
"version": "3.13.1"
|
299 |
+
}
|
300 |
+
},
|
301 |
+
"nbformat": 4,
|
302 |
+
"nbformat_minor": 2
|
303 |
+
}
|
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import re
|
5 |
+
import nltk
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
from wordcloud import WordCloud
|
9 |
+
from nltk.corpus import stopwords
|
10 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
11 |
+
|
12 |
+
# Download stopwords if not already available
|
13 |
+
nltk.download("stopwords")
|
14 |
+
stop_words = set(stopwords.words("english"))
|
15 |
+
|
16 |
+
# Load the trained model and TF-IDF vectorizer
|
17 |
+
model = joblib.load("sentiment_model.pkl")
|
18 |
+
vectorizer = joblib.load("tfidf_vectorizer.pkl")
|
19 |
+
|
20 |
+
# Load dataset with manually defined headers
|
21 |
+
column_names = ["id", "place", "label", "text"]
|
22 |
+
df = pd.read_csv("twitter_training.csv", names=column_names, header=None)
|
23 |
+
|
24 |
+
# Function to preprocess text
|
25 |
+
def preprocess_text(text):
|
26 |
+
text = str(text).lower()
|
27 |
+
text = re.sub(r"\W", " ", text) # Remove special characters
|
28 |
+
text = re.sub(r"\s+", " ", text).strip() # Remove extra spaces
|
29 |
+
text = " ".join([word for word in text.split() if word not in stop_words]) # Remove stopwords
|
30 |
+
return text
|
31 |
+
|
32 |
+
# Load test dataset and compute model metrics
|
33 |
+
try:
|
34 |
+
test_df = pd.read_csv("twitter_validation.csv", names=column_names, header=None)
|
35 |
+
X_test = vectorizer.transform(test_df["text"].astype(str))
|
36 |
+
y_test = test_df["label"]
|
37 |
+
y_pred = model.predict(X_test)
|
38 |
+
|
39 |
+
# Model metrics
|
40 |
+
accuracy = accuracy_score(y_test, y_pred)
|
41 |
+
classification_report_text = classification_report(y_test, y_pred, output_dict=True)
|
42 |
+
class_report_df = pd.DataFrame(classification_report_text).T.round(2)
|
43 |
+
|
44 |
+
# Compute confusion matrix
|
45 |
+
cm = confusion_matrix(y_test, y_pred, labels=["Positive", "Neutral", "Negative"])
|
46 |
+
|
47 |
+
except Exception as e:
|
48 |
+
accuracy = None
|
49 |
+
class_report_df = None
|
50 |
+
cm = None
|
51 |
+
|
52 |
+
# Function to predict sentiment
|
53 |
+
def predict_sentiment(user_input):
|
54 |
+
cleaned_text = preprocess_text(user_input)
|
55 |
+
text_vector = vectorizer.transform([cleaned_text])
|
56 |
+
prediction = model.predict(text_vector)[0]
|
57 |
+
return prediction
|
58 |
+
|
59 |
+
# Sidebar Navigation
|
60 |
+
st.sidebar.title("π Sentiment Analysis App")
|
61 |
+
st.sidebar.markdown(
|
62 |
+
"This app performs **Sentiment Analysis** on text using **Machine Learning**. "
|
63 |
+
"It classifies text as **Positive, Neutral, or Negative** based on its sentiment."
|
64 |
+
)
|
65 |
+
|
66 |
+
st.sidebar.header("π Navigation")
|
67 |
+
page = st.sidebar.radio(
|
68 |
+
"Go to:",
|
69 |
+
["π Dataset", "π Visualizations", "π Model Metrics", "π€ Sentiment Predictor"]
|
70 |
+
)
|
71 |
+
|
72 |
+
# App Title and Explanation
|
73 |
+
st.title("π’ Twitter Sentiment Analysis")
|
74 |
+
st.markdown(
|
75 |
+
"This application uses **Natural Language Processing (NLP)** and "
|
76 |
+
"**Logistic Regression** to analyze the sentiment of tweets. The model is trained using a dataset "
|
77 |
+
"of tweets labeled as **Positive, Neutral, or Negative**."
|
78 |
+
)
|
79 |
+
|
80 |
+
# π Dataset Page
|
81 |
+
if page == "π Dataset":
|
82 |
+
st.header("π Dataset Preview")
|
83 |
+
st.markdown("### Displaying Rows **50-55** from the Training Data:")
|
84 |
+
st.dataframe(df.iloc[49:55])
|
85 |
+
|
86 |
+
# π Visualization Page
|
87 |
+
elif page == "π Visualizations":
|
88 |
+
st.header("π Data Visualizations")
|
89 |
+
|
90 |
+
# Pie Chart of Sentiments
|
91 |
+
st.subheader("π₯§ Sentiment Distribution")
|
92 |
+
fig, ax = plt.subplots(figsize=(5, 5))
|
93 |
+
df["label"].value_counts().plot(kind="pie", autopct="%1.1f%%", colors=["green", "gray", "red", "blue"], ax=ax)
|
94 |
+
plt.title("Sentiment Distribution")
|
95 |
+
plt.ylabel("")
|
96 |
+
st.pyplot(fig)
|
97 |
+
|
98 |
+
# Bar Chart of Sentiment Counts
|
99 |
+
st.subheader("π Sentiment Count (Bar Chart)")
|
100 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
101 |
+
sns.countplot(x=df["label"], palette={"Positive": "green", "Neutral": "gray", "Negative": "red", "Irrelevant": "blue"}, ax=ax)
|
102 |
+
plt.xlabel("Sentiment Type")
|
103 |
+
plt.ylabel("Count")
|
104 |
+
plt.title("Distribution of Sentiments")
|
105 |
+
st.pyplot(fig)
|
106 |
+
|
107 |
+
# Word Cloud for Most Frequent Words
|
108 |
+
st.subheader("βοΈ Word Cloud of Most Common Words")
|
109 |
+
text_data = " ".join(df["text"].astype(str))
|
110 |
+
wordcloud = WordCloud(width=800, height=400, background_color="white").generate(text_data)
|
111 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
112 |
+
ax.imshow(wordcloud, interpolation="bilinear")
|
113 |
+
ax.axis("off")
|
114 |
+
st.pyplot(fig)
|
115 |
+
|
116 |
+
# π Model Metrics Page
|
117 |
+
elif page == "π Model Metrics":
|
118 |
+
st.header("π Model Performance")
|
119 |
+
|
120 |
+
if accuracy is not None:
|
121 |
+
st.write(f"β
**Accuracy:** {accuracy * 100:.2f}%")
|
122 |
+
else:
|
123 |
+
st.warning("β οΈ Could not calculate accuracy. Please check the test dataset.")
|
124 |
+
|
125 |
+
if class_report_df is not None and not class_report_df.empty:
|
126 |
+
st.subheader("π Classification Report")
|
127 |
+
st.dataframe(class_report_df)
|
128 |
+
else:
|
129 |
+
st.warning("β οΈ Classification report is empty.")
|
130 |
+
|
131 |
+
if cm is not None and cm.any():
|
132 |
+
st.subheader("π₯ Confusion Matrix")
|
133 |
+
fig, ax = plt.subplots(figsize=(6, 5))
|
134 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=["Positive", "Neutral", "Negative"], yticklabels=["Positive", "Neutral", "Negative"], ax=ax)
|
135 |
+
plt.xlabel("Predicted")
|
136 |
+
plt.ylabel("Actual")
|
137 |
+
plt.title("Confusion Matrix")
|
138 |
+
st.pyplot(fig)
|
139 |
+
else:
|
140 |
+
st.warning("β οΈ Confusion matrix could not be generated.")
|
141 |
+
|
142 |
+
# π€ Sentiment Predictor Page
|
143 |
+
elif page == "π€ Sentiment Predictor":
|
144 |
+
st.header("π€ Sentiment Analysis")
|
145 |
+
st.markdown("Enter a sentence below, and the model will predict whether it is **Positive, Neutral, or Negative**.")
|
146 |
+
|
147 |
+
user_input = st.text_area("Type your sentence here:", "")
|
148 |
+
|
149 |
+
if st.button("Analyze Sentiment"):
|
150 |
+
if user_input.strip():
|
151 |
+
sentiment_result = predict_sentiment(user_input)
|
152 |
+
st.markdown(f"### π Prediction: **{sentiment_result}**")
|
153 |
+
else:
|
154 |
+
st.warning("Please enter some text to analyze.")
|
confusion_matrix.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
joblib
|
3 |
+
pandas
|
4 |
+
nltk
|
5 |
+
matplotlib
|
6 |
+
seaborn
|
7 |
+
wordcloud
|
8 |
+
scikit-learn
|
sentiment_distribution.png
ADDED
![]() |
sentiment_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5061ba50ae5dfc7b3f1415eade952be7b8764ade9d1945e2ec27f5ad85e63092
|
3 |
+
size 161127
|
tfidf_vectorizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24722296250083368688b553d01fb5b3723364fea155b7d64820200e681c149f
|
3 |
+
size 181291
|
twitter_training.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
twitter_validation.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|