Spaces:
Running
Running
File size: 48,252 Bytes
2d37733 9093067 d948455 94a5e86 1d3d95d 9093067 d948455 2d37733 68d53f7 7d6b1f5 68d53f7 d948455 68d53f7 d948455 2d37733 7d6b1f5 d948455 2d37733 d948455 7d6b1f5 d948455 ad4ca82 cd796d6 ad4ca82 9affb79 d948455 2d37733 7d6b1f5 2d37733 d948455 94a5e86 d948455 9093067 ad4ca82 9affb79 ad4ca82 9affb79 ad4ca82 9affb79 ad4ca82 d948455 ad4ca82 d948455 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 d948455 bd0b7e3 d948455 722a50c d948455 2d37733 1d3d95d 2d37733 bd0b7e3 d948455 94a5e86 d948455 bd0b7e3 d948455 719dba0 d948455 719dba0 d948455 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 ad4ca82 d948455 7d6b1f5 2d37733 d948455 2d37733 722a50c 7d6b1f5 722a50c 2d37733 d948455 2d37733 719dba0 d948455 9affb79 719dba0 d948455 722a50c 7d6b1f5 722a50c ad4ca82 722a50c ad4ca82 bd0b7e3 722a50c d948455 722a50c 7d6b1f5 722a50c d948455 2d37733 d948455 bd0b7e3 ad4ca82 bd0b7e3 ad4ca82 722a50c bd0b7e3 722a50c 1d3d95d 722a50c 1d3d95d bd0b7e3 1d3d95d 722a50c bd0b7e3 84b3b1e 722a50c d948455 bd0b7e3 d948455 2d37733 722a50c 2d37733 2d87b61 1d3d95d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 |
import os
import requests
import gradio as gr
import uuid
import datetime
from supabase import create_client, Client
from supabase.lib.client_options import ClientOptions
import dotenv
from google.cloud import storage
import json
from pathlib import Path
import mimetypes
from workflow_handler import WanVideoWorkflow
from video_config import MODEL_FRAME_RATES, calculate_frames
import asyncio
from openai import OpenAI
import base64
from google.cloud import vision
from google.oauth2 import service_account
dotenv.load_dotenv()
SCRIPT_DIR = Path(__file__).parent
CONFIG_PATH = SCRIPT_DIR / "config.json"
WORKFLOW_PATH = SCRIPT_DIR / "wani2v.json"
loras = [
{
#I suggest it to be a gif instead of an mp4!
"image": "https://huggingface.co/Remade-AI/Squish/resolve/main/example_gifs/person_squish.gif",
#This is an id you can send to your backend, obviously you can change it
"id": "06ce6840-f976-4963-9644-b6cf7f323f90",
#This is the title that is shown on the front end
"title": "Squish",
"example_prompt": "In the video, a miniature rodent is presented. The rodent is held in a person's hands. The person then presses on the rodent, causing a sq41sh squish effect. The person keeps pressing down on the rodent, further showing the sq41sh squish effect.",
},
{
"image": "https://huggingface.co/Remade-AI/Rotate/resolve/main/example_videos/chair-rotate.gif",
"id": "4ac08cfa-841e-4aa9-9022-c3fc80fb6ef4",
"title": "Rotate",
"example_prompt": "The video shows an elderly Asian man's head and shoulders with blurred background, performing a r0t4tion 360 degrees rotation.",
},
{
"image": "https://huggingface.co/Remade-AI/Cakeify/resolve/main/example_gifs/timberland_cakeify.gif",
"id": "b05c1dc7-a71c-4d24-b512-4877a12dea7e",
"title": "Cakeify",
"example_prompt": "The video opens on a woman. A knife, held by a hand, is coming into frame and hovering over the woman. The knife then begins cutting into the woman to c4k3 cakeify it. As the knife slices the woman open, the inside of the woman is revealed to be cake with chocolate layers. The knife cuts through and the contents of the woman are revealed."
},
{
"image": "https://huggingface.co/Remade-AI/Muscle/resolve/main/example_videos/man2_muscle.gif",
"id": "3c6fd399-e558-43fa-8cd3-828300aac6f8",
"title": "Muscle",
"example_prompt": "A man t2k1s takes off clothes revealing a lean muscular body and shows off muscles, looking towards the camera."
},
{
"image": "https://storage.googleapis.com/remade-v2/huggingface_assets/crush_example.gif",
"id": "d8a2912b-94e4-4227-9c45-356679af34fd",
"title": "Crush",
"example_prompt": "The video begins with a cube saying closed source. A hydraulic press positioned above slowly descends towards the cube. Upon contact, the hydraulic press c5us4 crushes it, deforming and flattening the cube, causing the cube to collapse inward until the cube is no longer recognizable."
},
{
"image": "https://storage.googleapis.com/remade-v2/huggingface_assets/decay_example.gif",
"id": "6b6f64dc-ac14-44b2-b91c-a510cb7f7f32",
"title": "Decay",
"example_prompt": "The video shows a man. The d3c4y decay time-lapse begins, causing the man to change. The man is initially whole, but soon he appears to be rotting. The man slowly becomes increasingly shriveled and discolored, and eventually, the man decomposes and falls apart. The man is rotting in the center and appears to be covered in mold, completing the d3c4y decay time-lapse."
},
{
"image": "https://storage.googleapis.com/remade-v2/huggingface_assets/jesus_example.gif",
"id": "615fe106-fec4-44bb-b28b-2864cb322027",
"title": "Jesus",
"example_prompt": "The video begins with a smiling woman with a pink shirt looking at the camera. Then jesus appears behind her as h54g hugs jesus. Jesus embraces the woman, and they both smile in front of a park."
},
{
"image": "https://storage.googleapis.com/remade-v2/huggingface_assets/inflate_example.gif",
"id": "da2b1c34-7be8-4161-a733-e8b19a98901c",
"title": "Inflate",
"example_prompt": "The large, bald man rides a gray donkey, then infl4t3 inflates it, both the man and the donkey expanding into giant, inflated figures against the desert landscape."
},
{
"image": "https://huggingface.co/Remade-AI/Jungle/resolve/main/example_videos/man1_jungle.gif",
"id": "cf749aeb-5f25-4c6e-b495-3ea8d81004ee",
"title": "Jungle It",
"example_prompt": "The video begins with a portrait of a man. The background is blurry, with shades of grey and green. Next, the 1ung13 jungle transformation occurs. The man is now in a jungle setting, bathed in sunlight. His hair is longer, and his hair is up. He is shirtless, with tribal markings on his chest. He wears jungle-like shorts. The man is swinging from a vine, posing in a dynamic, action-oriented manner. A dark panther-like figure is in the background. The scene evokes a sense of adventure and the wild."
},
{
"image": "https://huggingface.co/Remade-AI/Baby/resolve/main/example_videos/goku_baby.gif",
"id": "5e45b11e-b9ff-404a-9afa-22a3c5596523c",
"title": "Baby It",
"example_prompt": "The video starts with a studio portrait of a woman. Then the image shifts to the 848y baby effect, the woman is in front of a crib, surrounded by toys. Finally, the 848y baby effect is shown again in a different location. The 848y baby version of the woman is in the crib and seems excited and amused."
},
{
"image": "https://huggingface.co/Remade-AI/Assassin/resolve/main/example_videos/dog_assassin.gif",
"id": "88600b53-336a-4d0c-a1a4-8b53e9775f03",
"title": "Assassin It",
"example_prompt": "The video starts with a portrait of a dog. Then, the 3p1c epic transformation starts. The dog is wearing a red coat, and the 3p1c epic transformation is complete. The dog is holding a gun in each hand. The dog has white hair and black gloves."
},
{
"image": "https://huggingface.co/Remade-AI/Warrior/resolve/main/example_videos/dog_warrior.gif",
"id": "4140f3c2-430d-4b47-b40a-997f361d83dc",
"title": "Warrior It",
"example_prompt": "The video starts with a woman. The next scene shows her with a mountain range in the background. her shirt is pulled up to his midriff, and she is wearing a skirt-like bottom. The woman has a belt around her waist and is gesturing with her right hand. She is wearing brown, medieval looking leggings. The effect seen is warr10r warrior it. The woman now appears as a warrior with an axe. She is shirtless, muscular, has tattoos, and is smiling with a determined look on her face. The background is the same mountain range as before. The next scene shows the woman still as a warrior, and he is holding an axe with a golden axe head."
},
{
"image": "https://huggingface.co/Remade-AI/Pirate-Captain/resolve/main/example_videos/cat_example.gif.gif",
"id": "26c4248e-4289-4964-b01b-ace89c7ad407",
"title": "Pirate It",
"example_prompt": "The video begins with a man posing. The image then transitions to the p1r4t3 pirate captain transformation. The man is wearing a black pirate hat with a red band around it, a coat and pants, and a pirate style sash. The scene changes, showing the man on a wooden ship. He has long dreadlock style hair and a sword. The scene changes again to show the man with his sword, in the same location on the boat."
},
{
"image": "https://huggingface.co/Remade-AI/Bride/resolve/main/example_videos/rabbit_bride.gif",
"id": "bd3100fe-65be-416c-994f-bb5acee1404d",
"title": "Bride It",
"example_prompt": "The video begins with a portrait of a bunny rabbit, then the 8r1d3 bride effect occurs. The bunny rabbit is now in a white wedding dress, holding a bouquet, with a sunny, warm beige background. "
},
{
"image": "https://huggingface.co/Remade-AI/VIP/resolve/main/example_videos/thanos_vip.gif",
"id": "fa3355bc-2b7c-42f6-b22e-a6b07937a20c",
"title": "VIP it",
"example_prompt": "The video begins with an image of purple Thanos from Marvel. Then the v1p red carpet transformation appears. Purple Thanos is shown wearing a black dress, with gold jewelry around his neck and ears. The image is again of purple Thanos looking straight at the camera against a more lighted gray background. The v1p red carpet transformation continues, purple Thanos is now on the red carpet with photographers taking pictures and other people behind a barricade to the sides. Purple Thanos is wearing the same black dress and jewelry, in focus at the center of the frame."
},
{
"image": "https://huggingface.co/Remade-AI/Zen/resolve/main/example_videos/man_zen.gif",
"id": "328c6078-515a-4fa0-8b5d-9ea993954f80",
"title": "Zen It",
"example_prompt": "The video starts with a portrait of a purple Thanos from Marvel. The scene then transitions to the Thanos' z3n1fy zen transformation as he's wearing a pink robe with a white shirt underneath, with a zen garden background. Thanos is facing the camera with a neutral expression. The background appears to be blurred and out of focus. The scene then transitions again to show the transformed Thanos, in what appears to be a garden setting. He is now wearing a black kimono with white floral designs and a white belt. Thanos carries a basket in one hand and a colorful fan in the other. He is walking down a pathway lined with hedges and greenery. The z3n1fy zen transformation is complete. Thanos has a neutral expression, looking directly at the camera."
},
]
# Initialize Supabase client with async support
supabase: Client = create_client(
os.getenv('SUPABASE_URL'),
os.getenv('SUPABASE_KEY'),
)
# Initialize OpenAI client
openai_client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
def initialize_gcs():
"""Initialize Google Cloud Storage client with credentials from environment"""
try:
# Parse service account JSON from environment variable
service_account_json = os.getenv('SERVICE_ACCOUNT_JSON')
if not service_account_json:
raise ValueError("SERVICE_ACCOUNT_JSON environment variable not found")
credentials_info = json.loads(service_account_json)
# Initialize storage client
storage_client = storage.Client.from_service_account_info(credentials_info)
print("Successfully initialized Google Cloud Storage client")
return storage_client
except Exception as e:
print(f"Error initializing Google Cloud Storage: {e}")
raise
def upload_to_gcs(file_path, content_type=None, folder='user_uploads'):
"""
Uploads a file to Google Cloud Storage
Args:
file_path: Path to the file to upload
content_type: MIME type of the file (optional)
folder: Folder path in bucket (default: 'user_uploads')
Returns:
str: Public URL of the uploaded file
"""
try:
bucket_name = 'remade-v2'
storage_client = initialize_gcs()
bucket = storage_client.bucket(bucket_name)
# Get file extension and generate unique filename
file_extension = Path(file_path).suffix
if not content_type:
content_type = mimetypes.guess_type(file_path)[0] or 'application/octet-stream'
# Validate file type
valid_types = ['image/jpeg', 'image/png', 'image/gif']
if content_type not in valid_types:
raise ValueError("Invalid file type. Please upload a JPG, PNG or GIF image.")
# Generate unique filename with proper path structure
filename = f"{str(uuid.uuid4())}{file_extension}"
file_path_in_gcs = f"{folder}/{filename}"
# Create blob and set metadata
blob = bucket.blob(file_path_in_gcs)
blob.content_type = content_type
blob.cache_control = 'public, max-age=31536000'
print(f'Uploading file to GCS: {file_path_in_gcs}')
# Upload the file
blob.upload_from_filename(
file_path,
timeout=120 # 2 minute timeout
)
# Generate public URL with correct path format
image_url = f"https://storage.googleapis.com/{bucket_name}/{file_path_in_gcs}"
print(f"Successfully uploaded to GCS: {image_url}")
return image_url
except Exception as e:
print(f"Error uploading to GCS: {e}")
raise ValueError(f"Failed to upload image to storage: {str(e)}")
def build_lora_prompt(subject, lora_id):
"""
Builds a standardized prompt based on the selected LoRA and subject
"""
# Get LoRA config
lora_config = next((lora for lora in loras if lora["id"] == lora_id), None)
if not lora_config:
raise ValueError(f"Invalid LoRA ID: {lora_id}")
if lora_id == "06ce6840-f976-4963-9644-b6cf7f323f90": # Squish
return (
f"In the video, a miniature {subject} is presented. "
f"The {subject} is held in a person's hands. "
f"The person then presses on the {subject}, causing a sq41sh squish effect. "
f"The person keeps pressing down on the {subject}, further showing the sq41sh squish effect."
)
elif lora_id == "4ac08cfa-841e-4aa9-9022-c3fc80fb6ef4": # Rotate
return (
f"The video shows a {subject} performing a r0t4tion 360 degrees rotation."
)
elif lora_id == "b05c1dc7-a71c-4d24-b512-4877a12dea7e": # Cakeify
return (
f"The video opens on a {subject}. A knife, held by a hand, is coming into frame "
f"and hovering over the {subject}. The knife then begins cutting into the {subject} "
f"to c4k3 cakeify it. As the knife slices the {subject} open, the inside of the "
f"{subject} is revealed to be cake with chocolate layers. The knife cuts through "
f"and the contents of the {subject} are revealed."
)
elif lora_id == "3c6fd399-e558-43fa-8cd3-828300aac6f8": # Muscle
return (
f"A {subject} t2k1s takes off clothes revealing a lean muscular body and shows off muscles, "
f"looking towards the camera."
)
elif lora_id == "d8a2912b-94e4-4227-9c45-356679af34fd": # Crush
return (
f"The video begins with a {subject}. A hydraulic press positioned above slowly descends "
f"towards the {subject}. Upon contact, the hydraulic press c5us4 crushes it, deforming and "
f"flattening the {subject}, causing the {subject} to collapse inward until the {subject} is "
f"no longer recognizable."
)
elif lora_id == "6b6f64dc-ac14-44b2-b91c-a510cb7f7f32": # Decay
return (
f"The video shows a {subject}. The d3c4y decay time-lapse begins, causing the {subject} to change. "
f"The {subject} is initially whole, but soon it appears to be rotting. The {subject} slowly becomes "
f"increasingly shriveled and discolored, and eventually, the {subject} decomposes and falls apart. "
f"The {subject} is rotting in the center and appears to be covered in mold, completing the d3c4y decay time-lapse."
)
elif lora_id == "615fe106-fec4-44bb-b28b-2864cb322027": # Jesus
return (
f"The video begins with a {subject}. Then jesus appears behind the {subject} "
f"as h54g hugs jesus. Jesus embraces the {subject}, and they both smile."
)
elif lora_id == "da2b1c34-7be8-4161-a733-e8b19a98901c": # Inflate
return (
f"The {subject} infl4t3 inflates, expanding into a giant, inflated figure."
)
elif lora_id == "cf749aeb-5f25-4c6e-b495-3ea8d81004ee": # Jungle It
return (
f"The video shows a {subject}. The 1ung13 jungle transformation occurs, transporting the {subject} "
f"to a jungle setting bathed in sunlight. The transformed {subject} appears more wild and primitive, "
f"with tribal markings, in an action pose. A dark panther-like figure appears in the background."
)
elif lora_id == "5e45b11e-b9ff-404a-9afa-22a3c5596523c": # Baby It
return (
f"The video shows a {subject}. The 848y baby effect transforms the {subject}, "
f"placing them in front of a crib surrounded by toys. The 848y baby version of the {subject} "
f"appears in the crib, excited and amused."
)
elif lora_id == "88600b53-336a-4d0c-a1a4-8b53e9775f03": # Assassin It
return (
f"The video shows a {subject}. The 3p1c epic transformation begins, "
f"clothing the {subject} in a red coat. The 3p1c epic transformation completes as "
f"the {subject} appears with white hair, black gloves, holding a gun in each hand."
)
elif lora_id == "4140f3c2-430d-4b47-b40a-997f361d83dc": # Warrior It
return (
f"The video shows a {subject}. The warr10r warrior transformation occurs, "
f"transforming the {subject} into a warrior with an axe. The transformed {subject} appears "
f"muscular with tattoos, holding a golden-headed axe in a powerful pose against a mountain backdrop."
)
elif lora_id == "26c4248e-4289-4964-b01b-ace89c7ad407": # Pirate It
return (
f"The video shows a {subject}. The p1r4t3 pirate captain transformation begins, "
f"adorning the {subject} with a black pirate hat with red band, coat, pants, and pirate sash. "
f"The scene transitions to a wooden ship where the transformed {subject} appears with "
f"long dreadlock style hair, wielding a sword."
)
elif lora_id == "bd3100fe-65be-416c-994f-bb5acee1404d": # Bride It
return (
f"The video shows a {subject}. The 8r1d3 bride effect transforms the {subject}, "
f"placing them in a white wedding dress, holding a bouquet against a sunny, warm background."
)
elif lora_id == "fa3355bc-2b7c-42f6-b22e-a6b07937a20c": # VIP It
return (
f"The video shows a {subject}. The v1p red carpet transformation begins, "
f"clothing the {subject} in a black dress with gold jewelry. The v1p red carpet scene expands, "
f"placing the {subject} on a red carpet with photographers and crowds behind barricades, "
f"keeping the {subject} as the elegant focal point."
)
elif lora_id == "328c6078-515a-4fa0-8b5d-9ea993954f80": # Zen It
return (
f"The video shows a {subject}. The z3n1fy zen transformation begins, "
f"dressing the {subject} in a pink robe with white shirt in a zen garden setting. "
f"The transformation continues as the {subject} appears in a black kimono with white floral designs "
f"and white belt, carrying a basket and colorful fan, walking along a garden path with hedges."
)
else:
# Fallback to using the example prompt from the LoRA config
if "example_prompt" in lora_config:
# Replace any specific subject in the example with the user's subject
return lora_config["example_prompt"].replace("rodent", subject).replace("woman", subject).replace("man", subject)
else:
raise ValueError(f"Unknown LoRA ID: {lora_id} and no example prompt available")
def poll_generation_status(generation_id):
"""Poll generation status from database"""
try:
# Query the database for the current status
response = supabase.table('generations') \
.select('*') \
.eq('generation_id', generation_id) \
.execute()
if not response.data:
return None
return response.data[0]
except Exception as e:
print(f"Error polling generation status: {e}")
raise e
async def moderate_prompt(prompt: str) -> dict:
"""
Check if a text prompt contains NSFW content with strict rules against inappropriate content
"""
try:
# First check with OpenAI moderation
response = openai_client.moderations.create(input=prompt)
result = response.results[0]
if result.flagged:
# Find which categories were flagged
flagged_categories = [
category for category, flagged in result.categories.model_dump().items()
if flagged
]
return {
"isNSFW": True,
"reason": f"Content flagged for: {', '.join(flagged_categories)}"
}
# Additional checks for keywords related to minors or inappropriate content
keywords = [
"child", "kid", "minor", "teen", "young", "baby", "infant", "underage",
"naked", "nude", "nsfw", "porn", "xxx", "sex", "explicit",
"inappropriate", "adult content"
]
lower_prompt = prompt.lower()
found_keywords = [word for word in keywords if word in lower_prompt]
if found_keywords:
return {
"isNSFW": True,
"reason": f"Content contains inappropriate keywords: {', '.join(found_keywords)}"
}
return {"isNSFW": False, "reason": None}
except Exception as e:
print(f"Error during prompt moderation: {e}")
# If there's an error, reject the prompt to be safe
return {
"isNSFW": True,
"reason": "Failed to verify prompt safety - please try again"
}
async def moderate_image(image_path: str) -> dict:
"""
Check if an image contains NSFW content using both Google Cloud Vision API's SafeSearch detection
and OpenAI's vision model for double verification
"""
try:
# Convert image to base64 for OpenAI
with open(image_path, "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
# 1. Google Cloud Vision API Check using proper client library
try:
# Get service account info from environment
service_account_info = json.loads(os.getenv('SERVICE_ACCOUNT_JSON'))
# Initialize Vision client with credentials
credentials = service_account.Credentials.from_service_account_info(service_account_info)
vision_client = vision.ImageAnnotatorClient(credentials=credentials)
# Load image content
with open(image_path, "rb") as image_file:
content = image_file.read()
# Create image object
image = vision.Image(content=content)
# Perform safe search detection
response = vision_client.safe_search_detection(image=image)
safe_search = response.safe_search_annotation
# Map likelihood values
likelihood_values = {
vision.Likelihood.VERY_LIKELY: 4,
vision.Likelihood.LIKELY: 3,
vision.Likelihood.POSSIBLE: 2,
vision.Likelihood.UNLIKELY: 1,
vision.Likelihood.VERY_UNLIKELY: 0,
vision.Likelihood.UNKNOWN: 0
}
# Get likelihood scores
adult_score = likelihood_values[safe_search.adult]
racy_score = likelihood_values[safe_search.racy]
violence_score = likelihood_values[safe_search.violence]
medical_score = likelihood_values[safe_search.medical]
# Determine if content is NSFW according to Vision API
vision_reasons = []
if adult_score >= 3: # LIKELY or VERY_LIKELY
vision_reasons.append("adult content")
if racy_score >= 3: # LIKELY or VERY_LIKELY
vision_reasons.append("suggestive content")
if violence_score >= 3: # LIKELY or VERY_LIKELY
vision_reasons.append("violent content")
# Print Vision API results
print("Google Cloud Vision API Results:")
print(f"Adult: {vision.Likelihood(safe_search.adult).name}")
print(f"Racy: {vision.Likelihood(safe_search.racy).name}")
print(f"Violence: {vision.Likelihood(safe_search.violence).name}")
print(f"Medical: {vision.Likelihood(safe_search.medical).name}")
except Exception as vision_error:
print(f"Error with Vision API: {vision_error}")
vision_reasons = [] # Continue with OpenAI check if Vision API fails
# 2. OpenAI Vision Check
openai_response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": "You are a content review system. Your task is to analyze the image and determine if it contains any inappropriate content that would make it unsuitable for general audiences. Especially don't allow any content involving minors (children). Please respond with 'SAFE' if the image is appropriate, or 'NSFW: <reason>' if you detect any concerning content."
},
{
"role": "user",
"content": [
{"type": "text", "text": "Is this image appropriate for general audiences?"},
{"type": "image_url", "image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}}
]
}
],
max_tokens=150
)
openai_result = openai_response.choices[0].message.content.strip()
print("\nOpenAI Vision Check Result:")
print(openai_result)
# Combine results from both services
is_nsfw_vision = bool(vision_reasons)
is_nsfw_openai = openai_result.startswith("NSFW:")
# If either service flags the content, reject it
if is_nsfw_vision or is_nsfw_openai:
reasons = []
if vision_reasons:
reasons.append(f"Google Vision: {', '.join(vision_reasons)}")
if is_nsfw_openai:
reasons.append(f"OpenAI: {openai_result[5:].strip()}")
return {
"isNSFW": True,
"reason": f"Image contains inappropriate content: {'; '.join(reasons)}"
}
return {"isNSFW": False, "reason": None}
except Exception as e:
print(f"Error during image moderation: {e}")
# If there's an error, reject the image to be safe
return {
"isNSFW": True,
"reason": "Failed to verify image safety - please try again"
}
async def moderate_combined(prompt: str, image_path: str) -> dict:
"""
Check if both a prompt and image contain NSFW content together with strict rules
"""
try:
# Convert image to base64
with open(image_path, "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": """You are a strict content moderation system. Your task is to determine if an image and prompt combination would result in inappropriate content.
STRICT RULES:
1. NO content involving minors in any way
2. NO nudity or sexually suggestive content
3. NO extreme violence or gore
4. NO hate speech or discriminatory content
5. NO illegal activities
Respond with 'NSFW: <reason>' if ANY of these rules are violated, or 'SAFE' if appropriate.
Be extremely cautious - if there's any doubt, mark it as NSFW."""
},
{
"role": "user",
"content": [
{
"type": "text",
"text": f'Please moderate this image and prompt combination for an image-to-video generation:\n\nPrompt: "{prompt}"\n\nEnsure NO inappropriate content, especially involving minors.'
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
],
max_tokens=150
)
result = response.choices[0].message.content.strip()
if result.startswith("NSFW:"):
return {
"isNSFW": True,
"reason": result[5:].strip()
}
return {
"isNSFW": False,
"reason": None
}
except Exception as e:
print(f"Error during combined moderation: {e}")
# If there's an error, reject to be safe
return {
"isNSFW": True,
"reason": "Failed to verify content safety - please try again"
}
async def generate_video(input_image, subject, duration, selected_index, progress=gr.Progress()):
try:
# Initialize workflow handler with explicit paths
workflow_handler = WanVideoWorkflow(
supabase,
config_path=str(CONFIG_PATH),
workflow_path=str(WORKFLOW_PATH)
)
# Check if the input is a URL (example image) or a file path (user upload)
if input_image.startswith('http'):
# It's already a URL, use it directly
image_url = input_image
else:
# It's a file path, upload to GCS
image_url = upload_to_gcs(input_image)
# Map duration selection to actual seconds
duration_mapping = {
"Short (3s)": 3,
"Long (5s)": 5
}
video_duration = duration_mapping[duration]
# Get LoRA config
lora_config = next((lora for lora in loras if lora["id"] == selected_index), None)
if not lora_config:
raise ValueError(f"Invalid LoRA ID: {selected_index}")
# Generate unique ID
generation_id = str(uuid.uuid4())
# Update workflow
prompt = build_lora_prompt(subject, selected_index)
workflow_handler.update_prompt(prompt)
workflow_handler.update_input_image(image_url)
await workflow_handler.update_lora(lora_config)
workflow_handler.update_length(video_duration)
workflow_handler.update_output_name(generation_id)
# Get final workflow
workflow = workflow_handler.get_workflow()
# Store generation data in Supabase
generation_data = {
"generation_id": generation_id,
"user_id": "anonymous",
"status": "queued",
"progress": 0,
"worker_id": None,
"created_at": datetime.datetime.utcnow().isoformat(),
"message": {
"generationId": generation_id,
"workflow": {
"prompt": workflow
}
},
"metadata": {
"prompt": {
"original": subject,
"enhanced": subject
},
"lora": {
"id": selected_index,
"strength": 1.0,
"name": lora_config["title"]
},
"workflow": "img2vid",
"dimensions": None,
"input_image_url": image_url,
"video_length": {"duration": video_duration},
},
"error": None,
"output_url": None,
"batch_id": None,
"platform": "huggingface"
}
# Remove await - the execute() method returns the response directly
response = supabase.table('generations').insert(generation_data).execute()
print(f"Stored generation data with ID: {generation_id}")
# Return generation ID for tracking
return generation_id
except Exception as e:
print(f"Error in generate_video: {e}")
raise e
def update_selection(evt: gr.SelectData):
selected_lora = loras[evt.index]
sentence = f"Selected LoRA: {selected_lora['title']}"
return selected_lora['id'], sentence
async def handle_generation(image_input, subject, duration, selected_index, progress=gr.Progress(track_tqdm=True)):
try:
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
# First, moderate the prompt
prompt_moderation = await moderate_prompt(subject)
print(f"Prompt moderation result: {prompt_moderation}")
if prompt_moderation["isNSFW"]:
raise gr.Error(f"Content moderation failed: {prompt_moderation['reason']}")
# Then, moderate the image
image_moderation = await moderate_image(image_input)
print(f"Image moderation result: {image_moderation}")
if image_moderation["isNSFW"]:
raise gr.Error(f"Content moderation failed: {image_moderation['reason']}")
# Finally, check the combination
combined_moderation = await moderate_combined(subject, image_input)
print(f"Combined moderation result: {combined_moderation}")
if combined_moderation["isNSFW"]:
raise gr.Error(f"Content moderation failed: {combined_moderation['reason']}")
# Generate the video and get generation ID
generation_id = await generate_video(image_input, subject, duration, selected_index)
# Poll for status updates
while True:
generation = poll_generation_status(generation_id)
if not generation:
raise ValueError(f"Generation {generation_id} not found")
# Update progress
if 'progress' in generation:
progress_value = generation['progress']
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {progress_value}; --total: 100;"><span class="progress-text">Processing: {progress_value}%</span></div></div><div class="refresh-warning">Please do not refresh this page while processing</div>'
# Check status
if generation['status'] == 'completed':
# Final yield with completed video
yield generation['output_url'], generation_id, gr.update(visible=False)
break # Exit the loop
elif generation['status'] == 'error':
raise ValueError(f"Generation failed: {generation.get('error')}")
else:
# Yield progress update
yield None, generation_id, gr.update(value=progress_bar, visible=True)
# Wait before next poll
await asyncio.sleep(2)
except Exception as e:
print(f"Error in handle_generation: {e}")
raise e
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: auto; min-height: 350px}
#gallery .gallery-item {height: 100%; width: 100%; object-fit: cover}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #2a2a2a;border-radius: 15px;overflow: hidden;margin-bottom: 20px;position: relative;}
.progress-bar {height: 100%;background-color: #7289DA;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
.progress-text {position: absolute;width: 100%;text-align: center;top: 50%;left: 0;transform: translateY(-50%);color: #ffffff;font-weight: bold;}
.refresh-warning {color: #ff7675;font-weight: bold;text-align: center;margin-top: 5px;}
/* Dark mode Discord styling */
.discord-banner {
background: linear-gradient(135deg, #7289DA 0%, #5865F2 100%);
color: #ffffff;
padding: 20px;
border-radius: 12px;
margin: 15px 0;
text-align: center;
box-shadow: 0 4px 8px rgba(0,0,0,0.3);
}
.discord-banner h3 {
margin-top: 0;
font-size: 1.5em;
text-shadow: 0 2px 4px rgba(0,0,0,0.3);
color: #ffffff;
}
.discord-banner p {
color: #ffffff;
margin-bottom: 15px;
}
.discord-banner a {
display: inline-block;
background-color: #ffffff;
color: #5865F2;
text-decoration: none;
font-weight: bold;
padding: 10px 20px;
border-radius: 24px;
margin-top: 10px;
transition: all 0.3s ease;
box-shadow: 0 2px 8px rgba(0,0,0,0.3);
border: none;
}
.discord-banner a:hover {
transform: translateY(-3px);
box-shadow: 0 6px 12px rgba(0,0,0,0.4);
background-color: #f2f2f2;
}
.discord-feature {
background-color: #2a2a2a;
border-left: 4px solid #7289DA;
padding: 12px 15px;
margin: 10px 0;
border-radius: 0 8px 8px 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
color: #e0e0e0;
}
.discord-feature-title {
font-weight: bold;
color: #7289DA;
}
.discord-locked {
opacity: 0.7;
position: relative;
pointer-events: none;
}
.discord-locked::after {
content: "🔒 Discord members only";
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
background: rgba(114,137,218,0.9);
color: white;
padding: 5px 10px;
border-radius: 20px;
white-space: nowrap;
font-size: 0.9em;
font-weight: bold;
box-shadow: 0 2px 4px rgba(0,0,0,0.3);
}
.discord-benefits-list {
text-align: left;
display: inline-block;
margin: 10px 0;
color: #ffffff;
}
.discord-benefits-list li {
margin: 10px 0;
position: relative;
padding-left: 28px;
color: #ffffff;
font-weight: 500;
text-shadow: 0 1px 2px rgba(0,0,0,0.2);
}
.discord-benefits-list li::before {
content: "✨";
position: absolute;
left: 0;
color: #FFD700;
}
.locked-option {
opacity: 0.6;
cursor: not-allowed;
}
/* Warning message styling */
.warning-message {
background-color: #2a2a2a;
border-left: 4px solid #ff7675;
padding: 12px 15px;
margin: 10px 0;
border-radius: 0 8px 8px 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
color: #e0e0e0;
font-weight: bold;
}
/* Example images and upload section styling */
.upload-section {
display: flex;
gap: 20px;
margin: 20px 0;
}
.example-images-container {
flex: 1;
}
.upload-container {
flex: 1;
display: flex;
flex-direction: column;
justify-content: center;
}
.section-title {
font-weight: bold;
margin-bottom: 10px;
color: #7289DA;
}
.example-images-grid {
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 10px;
}
.example-image-item {
border-radius: 8px;
overflow: hidden;
cursor: pointer;
transition: all 0.2s ease;
border: 2px solid transparent;
}
.example-image-item:hover {
transform: scale(1.05);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
.example-image-item.selected {
border-color: #7289DA;
}
.upload-button {
margin-top: 15px;
}
'''
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="indigo", neutral_hue="slate", text_size="lg")) as demo:
selected_index = gr.State(None)
current_generation_id = gr.State(None)
gr.Markdown("# Remade AI - Wan 2.1 I2V effects LoRAs ")
# Discord banner at the top with improved contrast
discord_banner = gr.HTML(
"""<div class="discord-banner">
<h3>✨ Unlock Premium Features! ✨</h3>
<p>Join our Discord community to access longer videos, 100+ LoRAs, audio features, and faster generation times!</p>
<a href="https://discord.gg/remade-1" target="_blank">Join Discord Now</a>
</div>"""
)
selected_info = gr.HTML("")
with gr.Row():
with gr.Column(scale=1):
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="Select LoRA",
allow_preview=False,
columns=4,
elem_id="gallery",
show_share_button=False,
height="650px",
object_fit="contain"
)
# Discord feature callout for LoRAs with better contrast
gr.HTML(
"""<div class="discord-feature">
<span class="discord-feature-title">✨ Discord Members:</span> Access 100+ additional LoRAs beyond these 8 samples!
</div>"""
)
gr.HTML('<div class="section-description">Click an example image or upload your own</div>')
# Reorganized image input section - example images and upload side by side
with gr.Row():
with gr.Column(scale=1):
example_gallery = gr.Gallery(
[
("https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_1c2c6e4c-8938-4464-9355-84508bcca24e.jpg", "Old man"),
("https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_1f2c6ec9-823f-46d2-982f-73c494e51877.jpg", "Young woman"),
("https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_24d949f0-8699-4714-9c82-854e1b963063.jpg", "Puppy"),
("https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_af26651e-be1a-40c0-be18-c42b3bf6d211.png", "Mini toy dancers"),
("https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_d22a894e-a074-4742-9e23-787f001a3184.jpg", "Chair"),
("https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_e6472106-4e9d-4620-b41b-a9bbe4893415.png", "Cartoon boy on bike")
],
columns=3,
height="300px",
object_fit="cover"
)
with gr.Column(scale=1):
# Single image input component that will be used for both uploaded and example images
image_input = gr.Image(type="filepath", label="")
subject = gr.Textbox(label="Describe your subject", placeholder="Cat toy")
# Modified duration options - only one active option
duration = gr.Radio(
["Short (3s)"],
label="Duration",
value="Short (3s)"
)
# Add disabled duration option with Discord callout
gr.HTML(
"""<div class="discord-feature">
<span class="discord-feature-title">⏱️ Discord Members:</span> Access longer video durations (up to 10 seconds)!
</div>"""
)
# Add disabled audio button with Discord callout
with gr.Row():
button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
audio_button = gr.Button("Add Audio 🔒", interactive=False)
with gr.Column(scale=1):
# Warning message about not refreshing
warning_message = gr.HTML(
"""<div class="warning-message">
⚠️ Please DO NOT refresh the page during generation. GPUs may need to warm up and there is a queue. Please be patient. Thank you!
</div>""",
visible=True
)
# Discord feature callout for generation speed - moved above progress bar
gr.HTML(
"""<div class="discord-feature">
<span class="discord-feature-title">⚡ Discord Members:</span> Enjoy priority queue with faster generation times!
</div>"""
)
progress_bar = gr.Markdown(elem_id="progress", visible=False)
output = gr.Video(interactive=False, label="Output video")
gallery.select(
update_selection,
outputs=[selected_index, selected_info]
)
# Modified function to handle example image selection
def select_example_image(evt: gr.SelectData):
"""Handle example image selection and return image URL, description, and update image source"""
example_images = [
{
"url": "https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_1c2c6e4c-8938-4464-9355-84508bcca24e.jpg",
"description": "Old man"
},
{
"url": "https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_1f2c6ec9-823f-46d2-982f-73c494e51877.jpg",
"description": "Young woman"
},
{
"url": "https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_24d949f0-8699-4714-9c82-854e1b963063.jpg",
"description": "Puppy"
},
{
"url": "https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_af26651e-be1a-40c0-be18-c42b3bf6d211.png",
"description": "Mini toy dancers"
},
{
"url": "https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_d22a894e-a074-4742-9e23-787f001a3184.jpg",
"description": "Chair"
},
{
"url": "https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_e6472106-4e9d-4620-b41b-a9bbe4893415.png",
"description": "Cartoon boy on bike"
}
]
selected = example_images[evt.index]
# Return the URL, description, and update image source to "example"
return selected["url"], selected["description"], "example"
# Connect example gallery selection to image_input and subject
example_gallery.select(
fn=select_example_image,
outputs=[image_input, subject]
)
# Add a custom handler to check if inputs are valid
def check_inputs(subject, image_input, selected_index):
if not selected_index:
raise gr.Error("You must select a LoRA before proceeding.")
if not subject.strip():
raise gr.Error("Please describe your subject.")
if image_input is None:
raise gr.Error("Please upload an image or select an example image.")
# Use gr.on for the button click with validation
button.click(
fn=check_inputs,
inputs=[subject, image_input, selected_index],
outputs=None,
).success(
fn=handle_generation,
inputs=[image_input, subject, duration, selected_index],
outputs=[output, current_generation_id, progress_bar]
)
# Add a click handler for the disabled audio button
audio_button.click(
fn=lambda: gr.Info("Join our Discord to unlock audio generation features!"),
inputs=None,
outputs=None
)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=20)
demo.launch(ssr_mode=False, share=True)
|