Spaces:
Running
Running
File size: 45,590 Bytes
2d37733 9093067 d948455 94a5e86 1d3d95d 8f58f9b 9093067 d948455 0f05fa7 2d37733 8f58f9b 2d37733 0f05fa7 088746d 0f05fa7 088746d 0f05fa7 088746d 0f05fa7 088746d 0f05fa7 088746d 0f05fa7 088746d 0f05fa7 088746d 0f05fa7 2d37733 0f05fa7 2d37733 d948455 94a5e86 d948455 088746d ad4ca82 41eeb14 088746d ad4ca82 088746d ad4ca82 2170dd0 088746d 9affb79 088746d 9affb79 2170dd0 088746d 9affb79 088746d 9affb79 088746d 9affb79 088746d 9affb79 088746d 9affb79 088746d 9affb79 088746d 9affb79 088746d 9affb79 2170dd0 088746d 9affb79 088746d 9affb79 088746d 9affb79 088746d 9affb79 088746d 9affb79 ad4ca82 088746d d948455 ad4ca82 d948455 0f05fa7 d948455 0f05fa7 d948455 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 0f05fa7 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 0f05fa7 1d3d95d 0f05fa7 1d3d95d 0f05fa7 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 1d3d95d 94a5e86 0f05fa7 d948455 bd0b7e3 d948455 0f05fa7 d948455 0f05fa7 d948455 2d37733 1d3d95d 2d37733 8f58f9b d948455 94a5e86 8f58f9b 94a5e86 0f05fa7 94a5e86 0f05fa7 94a5e86 0f05fa7 94a5e86 d948455 0f05fa7 d948455 0f05fa7 d948455 719dba0 d948455 0f05fa7 d948455 0f05fa7 d948455 0f05fa7 d948455 0f05fa7 d948455 719dba0 d948455 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 9e0762a 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 0f05fa7 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 722a50c 7d6b1f5 ad4ca82 d948455 8f58f9b 7d6b1f5 2d37733 d948455 0f05fa7 722a50c 0f05fa7 088746d 0f05fa7 9e0762a 0f05fa7 088746d 722a50c 2d37733 088746d 2d37733 719dba0 d948455 9affb79 719dba0 d948455 722a50c 0f05fa7 722a50c 088746d 0f05fa7 088746d 722a50c 088746d ad4ca82 1c36571 ad4ca82 bd0b7e3 088746d d948455 722a50c 8f58f9b 722a50c 7d6b1f5 088746d 0f05fa7 088746d 7d6b1f5 722a50c 088746d 0f05fa7 088746d 722a50c d948455 2d37733 d948455 bd0b7e3 cdc26e2 bd0b7e3 cdc26e2 bd0b7e3 cdc26e2 bd0b7e3 cdc26e2 bd0b7e3 cdc26e2 bd0b7e3 ad4ca82 bd0b7e3 ad4ca82 722a50c bd0b7e3 722a50c 1d3d95d 722a50c 1d3d95d bd0b7e3 1d3d95d 722a50c 0f05fa7 722a50c bd0b7e3 84b3b1e 0f05fa7 722a50c d948455 0f05fa7 2d37733 722a50c 0f05fa7 722a50c 8f58f9b 2d37733 0f05fa7 8f58f9b 2d37733 2d87b61 1d3d95d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 |
import os
import requests
import gradio as gr
import uuid
import datetime
from supabase import create_client, Client
from supabase.lib.client_options import ClientOptions
import dotenv
from google.cloud import storage
import json
from pathlib import Path
import mimetypes
from video_config import MODEL_FRAME_RATES, calculate_frames
import asyncio
from openai import OpenAI
import base64
from google.cloud import vision
from google.oauth2 import service_account
import time
from collections import defaultdict, deque
dotenv.load_dotenv()
SCRIPT_DIR = Path(__file__).parent
# Modal configuration
MODAL_ENDPOINT = os.getenv('FAL_MODAL_ENDPOINT')
MODAL_AUTH_TOKEN = os.getenv('MODAL_AUTH_TOKEN')
# Rate limiting configuration
RATE_LIMIT_GENERATIONS = int(os.getenv('RATE_LIMIT_GENERATIONS', '5')) # Default 5 generations per hour
RATE_LIMIT_WINDOW = int(os.getenv('RATE_LIMIT_WINDOW', '3600')) # Default 1 hour in seconds
# In-memory rate limiting storage (for production, consider Redis)
user_generations = defaultdict(deque)
loras = [
{
"image": "https://huggingface.co/Remade-AI/Crash-zoom-out/resolve/main/example_videos/1.gif",
"id": "44c05ca1-422d-4cd4-8508-acadb6d0248c",
"title": "Crash Zoom Out ",
"example_prompt": "The video shows a man with a slight smile, then the j432mpscare jumpscare occurs, revealing a distorted and monstrous face with glowing red eyes, filling the frame and accompanied by a loud scream."
},
{
"image": "https://huggingface.co/Remade-AI/Crash-zoom-in/resolve/main/example_videos/1.gif",
"id": "34a80641-4702-4c1c-91bf-c436a59c79cb",
"title": "Crash Zoom In ",
"example_prompt": "The video shows a man with a slight smile, then the j432mpscare jumpscare occurs, revealing a distorted and monstrous face with glowing red eyes, filling the frame and accompanied by a loud scream."
},
{
"image": "https://huggingface.co/Remade-AI/Car-chase/resolve/main/example_videos/2.gif",
"id": "8b36b7fe-0a0b-4849-b0ed-d9a51ff0cc85",
"title": "Car Chase",
"example_prompt": "The video shows a man with a slight smile, then the j432mpscare jumpscare occurs, revealing a distorted and monstrous face with glowing red eyes, filling the frame and accompanied by a loud scream."
},
{
"image": "https://huggingface.co/Remade-AI/Crane-down/resolve/main/example_videos/2.gif",
"id": "f26db0b7-1c26-4587-b2b5-1cfd0c51c5b3",
"title": "Crane Down ",
"example_prompt": "The video shows a man with a slight smile, then the j432mpscare jumpscare occurs, revealing a distorted and monstrous face with glowing red eyes, filling the frame and accompanied by a loud scream."
},
{
"image": "https://huggingface.co/Remade-AI/Crane_up/resolve/main/example_videos/1.gif",
"id": "07c5e22b-7028-437c-9479-6eb9a50cf993",
"title": "Crane Up ",
"example_prompt": "The video shows a man with a slight smile, then the j432mpscare jumpscare occurs, revealing a distorted and monstrous face with glowing red eyes, filling the frame and accompanied by a loud scream."
},
{
"image": "https://huggingface.co/Remade-AI/Crane_over_the_head/resolve/main/example_videos/1.gif",
"id": "9393f8f4-abe6-4aa7-ba01-0b62e1507feb",
"title": "Crane Overhead ",
"example_prompt": "The video shows a man with a slight smile, then the j432mpscare jumpscare occurs, revealing a distorted and monstrous face with glowing red eyes, filling the frame and accompanied by a loud scream."
},
{
"image": "https://huggingface.co/Remade-AI/matrix-shot/resolve/main/example_videos/1.gif",
"id": "219ad5ad-8f23-48dc-b098-b8e6d9fbe6c0",
"title": "Matrix Shot ",
"example_prompt": "The video shows a man with a slight smile, then the j432mpscare jumpscare occurs, revealing a distorted and monstrous face with glowing red eyes, filling the frame and accompanied by a loud scream."
},
{
"image": "https://huggingface.co/Remade-AI/360-Orbit/resolve/main/example_videos/1.gif",
"id": "aaa3e820-5d94-4612-9488-0c9a1b2f5843",
"title": "360 Orbit ",
"example_prompt": "The video shows a man with a slight smile, then the j432mpscare jumpscare occurs, revealing a distorted and monstrous face with glowing red eyes, filling the frame and accompanied by a loud scream."
},
{
"image": "https://huggingface.co/Remade-AI/Arc_shot/resolve/main/example_videos/1.gif",
"id": "a5949ee3-61ea-4a18-bd4d-54c855f5401c",
"title": "Arc Shot ",
"example_prompt": "The video shows a man with a slight smile, then the j432mpscare jumpscare occurs, revealing a distorted and monstrous face with glowing red eyes, filling the frame and accompanied by a loud scream."
},
{
"image": "https://huggingface.co/Remade-AI/Hero-run/resolve/main/example_videos/1.gif",
"id": "36b9edf7-31d7-47d3-ad3b-e166fb3a9842",
"title": "Hero Run ",
"example_prompt": "The video shows a man with a slight smile, then the j432mpscare jumpscare occurs, revealing a distorted and monstrous face with glowing red eyes, filling the frame and accompanied by a loud scream."
},
]
# Initialize Supabase client with async support
supabase: Client = create_client(
os.getenv('SUPABASE_URL'),
os.getenv('SUPABASE_KEY'),
)
# Initialize OpenAI client
openai_client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
def initialize_gcs():
"""Initialize Google Cloud Storage client with credentials from environment"""
try:
# Parse service account JSON from environment variable
service_account_json = os.getenv('SERVICE_ACCOUNT_JSON')
if not service_account_json:
raise ValueError("SERVICE_ACCOUNT_JSON environment variable not found")
credentials_info = json.loads(service_account_json)
# Initialize storage client
storage_client = storage.Client.from_service_account_info(credentials_info)
print("Successfully initialized Google Cloud Storage client")
return storage_client
except Exception as e:
print(f"Error initializing Google Cloud Storage: {e}")
raise
def upload_to_gcs(file_path, content_type=None, folder='user_uploads'):
"""
Uploads a file to Google Cloud Storage
Args:
file_path: Path to the file to upload
content_type: MIME type of the file (optional)
folder: Folder path in bucket (default: 'user_uploads')
Returns:
str: Public URL of the uploaded file
"""
try:
bucket_name = 'remade-v2'
storage_client = initialize_gcs()
bucket = storage_client.bucket(bucket_name)
# Get file extension and generate unique filename
file_extension = Path(file_path).suffix
if not content_type:
content_type = mimetypes.guess_type(file_path)[0] or 'application/octet-stream'
# Validate file type
valid_types = ['image/jpeg', 'image/png', 'image/gif']
if content_type not in valid_types:
raise ValueError("Invalid file type. Please upload a JPG, PNG or GIF image.")
# Generate unique filename with proper path structure
filename = f"{str(uuid.uuid4())}{file_extension}"
file_path_in_gcs = f"{folder}/{filename}"
# Create blob and set metadata
blob = bucket.blob(file_path_in_gcs)
blob.content_type = content_type
blob.cache_control = 'public, max-age=31536000'
print(f'Uploading file to GCS: {file_path_in_gcs}')
# Upload the file
blob.upload_from_filename(
file_path,
timeout=120 # 2 minute timeout
)
# Generate public URL with correct path format
image_url = f"https://storage.googleapis.com/{bucket_name}/{file_path_in_gcs}"
print(f"Successfully uploaded to GCS: {image_url}")
return image_url
except Exception as e:
print(f"Error uploading to GCS: {e}")
raise ValueError(f"Failed to upload image to storage: {str(e)}")
def build_lora_prompt(subject, lora_id):
"""
Builds a standardized prompt based on the selected LoRA and subject
"""
# Get LoRA config
lora_config = next((lora for lora in loras if lora["id"] == lora_id), None)
if not lora_config:
raise ValueError(f"Invalid LoRA ID: {lora_id}")
if lora_id == "c8972c6d-ab8a-4988-9a9d-38082264ef22": # Jumpscare
return (
f"The video shows the {subject} with a slight smile, then the j432mpscare jumpscare occurs, "
f"revealing a distorted and monstrous face with glowing red eyes, filling the frame and accompanied by a loud scream."
)
elif lora_id == "d7cbf9b4-82cd-4a94-ba2f-040e809635fa": # Angry
return (
f"The video starts with the {subject} looking at the camera with a neutral face. "
f"Then the facial expression of the {subject} changes to 4ngr23 angry face, and begins to yell with clenched fists."
)
elif lora_id == "e17959c4-9fa5-4e5b-8f69-d1fb01bbe4fa": # Cartoon Jaw Drop
return (
f"The video shows {subject} smiling wide, "
f"then {subject} mouth transforms into a dr0p_j88 comical jaw drop, extending down in a long, rectangular shape, and revealing his tongue and teeth."
)
elif lora_id == "687255bb-959e-4422-bdbb-5aba93c7c180": # Kissing
return (
f"A {subject} is shown smiling. A man/woman comes into the scene and starts passionately k144ing kissing the {subject}."
)
elif lora_id == "4ac2fb4e-5ca2-4338-a59c-549167f5b6d0": # Laughing
return (
f"A {subject} is smiling at the camera. He/she then begins l4a6ing laughing."
)
elif lora_id == "bcc4163d-ebda-4cdc-b153-7136cdbf563a": # Crying
return (
f"The video starts with a {ubject} with a solemn expression. Then a tear rolls down his/her cheek, as he/she is cr471ng crying."
)
elif lora_id == "13093298-652c-4df8-ba28-62d9d5924754": # Take a selfie with your younger self
return (
f"The video starts with the {subject} smiling at the camera, then s31lf13 taking a selfie with their younger self, "
f"and the younger self appears next to the {subject} with similar facial features and eye color. "
f"The younger self wears a white t-shirt and has a cream white jacket. The younger self is smiling slightly."
)
elif lora_id == "06ce6840-f976-4963-9644-b6cf7f323f90": # Squish
return (
f"In the video, a miniature {subject} is presented. "
f"The {subject} is held in a person's hands. "
f"The person then presses on the {subject}, causing a sq41sh squish effect. "
f"The person keeps pressing down on the {subject}, further showing the sq41sh squish effect."
)
elif lora_id == "4ac08cfa-841e-4aa9-9022-c3fc80fb6ef4": # Rotate
return (
f"The video shows a {subject} performing a r0t4tion 360 degrees rotation."
)
elif lora_id == "b05c1dc7-a71c-4d24-b512-4877a12dea7e": # Cakeify
return (
f"The video opens on a {subject}. A knife, held by a hand, is coming into frame "
f"and hovering over the {subject}. The knife then begins cutting into the {subject} "
f"to c4k3 cakeify it. As the knife slices the {subject} open, the inside of the "
f"{subject} is revealed to be cake with chocolate layers. The knife cuts through "
f"and the contents of the {subject} are revealed."
)
else:
# Fallback to using the example prompt from the LoRA config
if "example_prompt" in lora_config:
# Replace any specific subject in the example with the user's subject
return lora_config["example_prompt"].replace("rodent", subject).replace("woman", subject).replace("man", subject)
else:
raise ValueError(f"Unknown LoRA ID: {lora_id} and no example prompt available")
def poll_generation_status(generation_id):
"""Poll generation status from Modal backend or database"""
try:
# First try to get status from Modal backend if available
if MODAL_ENDPOINT:
try:
response = requests.get(
f"{MODAL_ENDPOINT}/fal-effects/status?generation_id={generation_id}",
headers=get_modal_auth_headers()
)
except Exception as e:
print(f"Error polling Modal backend: {e}")
response = supabase.table('generations') \
.select('*') \
.eq('generation_id', generation_id) \
.execute()
if not response.data:
return None
return response.data[0]
except Exception as e:
print(f"Error polling generation status: {e}")
raise e
async def moderate_prompt(prompt: str) -> dict:
"""
Check if a text prompt contains NSFW content with strict rules against inappropriate content
"""
try:
# First check with OpenAI moderation
response = openai_client.moderations.create(input=prompt)
result = response.results[0]
if result.flagged:
# Find which categories were flagged
flagged_categories = [
category for category, flagged in result.categories.model_dump().items()
if flagged
]
return {
"isNSFW": True,
"reason": f"Content flagged for: {', '.join(flagged_categories)}"
}
# Additional checks for keywords related to minors or inappropriate content
keywords = [
"child", "kid", "minor", "teen", "baby", "infant", "underage",
"naked", "nude", "nsfw", "porn", "xxx", "sex", "explicit",
"inappropriate", "adult content"
]
lower_prompt = prompt.lower()
found_keywords = [word for word in keywords if word in lower_prompt]
if found_keywords:
return {
"isNSFW": True,
"reason": f"Content contains inappropriate keywords: {', '.join(found_keywords)}"
}
return {"isNSFW": False, "reason": None}
except Exception as e:
print(f"Error during prompt moderation: {e}")
# If there's an error, reject the prompt to be safe
return {
"isNSFW": True,
"reason": "Failed to verify prompt safety - please try again"
}
async def moderate_image(image_path: str) -> dict:
"""
Check if an image contains NSFW content using both Google Cloud Vision API's SafeSearch detection
and OpenAI's vision model for double verification
"""
try:
# Convert image to base64 for OpenAI
with open(image_path, "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
# 1. Google Cloud Vision API Check using proper client library
try:
# Get service account info from environment
service_account_info = json.loads(os.getenv('SERVICE_ACCOUNT_JSON'))
# Initialize Vision client with credentials
credentials = service_account.Credentials.from_service_account_info(service_account_info)
vision_client = vision.ImageAnnotatorClient(credentials=credentials)
# Load image content
with open(image_path, "rb") as image_file:
content = image_file.read()
# Create image object
image = vision.Image(content=content)
# Perform safe search detection
response = vision_client.safe_search_detection(image=image)
safe_search = response.safe_search_annotation
# Map likelihood values
likelihood_values = {
vision.Likelihood.VERY_LIKELY: 4,
vision.Likelihood.LIKELY: 3,
vision.Likelihood.POSSIBLE: 2,
vision.Likelihood.UNLIKELY: 1,
vision.Likelihood.VERY_UNLIKELY: 0,
vision.Likelihood.UNKNOWN: 0
}
# Get likelihood scores
adult_score = likelihood_values[safe_search.adult]
# Determine if content is NSFW according to Vision API
vision_reasons = []
if adult_score >= 3: # LIKELY or VERY_LIKELY
vision_reasons.append("adult content")
# Print Vision API results
print("Google Cloud Vision API Results:")
print(f"Adult: {vision.Likelihood(safe_search.adult).name}")
except Exception as vision_error:
print(f"Error with Vision API: {vision_error}")
vision_reasons = [] # Continue with OpenAI check if Vision API fails
# 2. OpenAI Vision Check
openai_response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": "You are a content review system. Your task is to analyze the image and determine if it contains any inappropriate content that would make it unsuitable for general audiences. Especially don't allow any content involving minors (children). Please respond with 'SAFE' if the image is appropriate, or 'NSFW: <reason>' if you detect any concerning content."
},
{
"role": "user",
"content": [
{"type": "text", "text": "Is this image appropriate for general audiences?"},
{"type": "image_url", "image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}}
]
}
],
max_tokens=150
)
openai_result = openai_response.choices[0].message.content.strip()
print("\nOpenAI Vision Check Result:")
print(openai_result)
# Combine results from both services
is_nsfw_vision = bool(vision_reasons)
is_nsfw_openai = openai_result.startswith("NSFW:")
# If either service flags the content, reject it
if is_nsfw_vision or is_nsfw_openai:
reasons = []
if vision_reasons:
reasons.append(f"Google Vision: {', '.join(vision_reasons)}")
if is_nsfw_openai:
reasons.append(f"OpenAI: {openai_result[5:].strip()}")
return {
"isNSFW": True,
"reason": f"Image contains inappropriate content: {'; '.join(reasons)}"
}
return {"isNSFW": False, "reason": None}
except Exception as e:
print(f"Error during image moderation: {e}")
# If there's an error, reject the image to be safe
return {
"isNSFW": True,
"reason": "Failed to verify image safety - please try again"
}
async def moderate_combined(prompt: str, image_path: str) -> dict:
"""
Check if both a prompt and image contain NSFW content together with strict rules
"""
try:
# Convert image to base64
with open(image_path, "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": """You are a strict content moderation system. Your task is to determine if an image and prompt combination would result in inappropriate content.
STRICT RULES:
1. NO content involving minors in any way
2. NO nudity or sexually suggestive content
3. NO extreme violence or gore
4. NO hate speech or discriminatory content
5. NO illegal activities
Respond with 'NSFW: <reason>' if ANY of these rules are violated, or 'SAFE' if appropriate.
Be extremely cautious - if there's any doubt, mark it as NSFW."""
},
{
"role": "user",
"content": [
{
"type": "text",
"text": f'Please moderate this image and prompt combination for an image-to-video generation:\n\nPrompt: "{prompt}"\n\nEnsure NO inappropriate content, especially involving minors.'
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
],
max_tokens=150
)
result = response.choices[0].message.content.strip()
if result.startswith("NSFW:"):
return {
"isNSFW": True,
"reason": result[5:].strip()
}
return {
"isNSFW": False,
"reason": None
}
except Exception as e:
print(f"Error during combined moderation: {e}")
# If there's an error, reject to be safe
return {
"isNSFW": True,
"reason": "Failed to verify content safety - please try again"
}
async def generate_video(input_image, subject, selected_index, progress=gr.Progress()):
try:
# Check if the input is a URL (example image) or a file path (user upload)
if input_image.startswith('http'):
# It's already a URL, use it directly
image_url = input_image
else:
# It's a file path, upload to GCS
image_url = upload_to_gcs(input_image)
# Hardcode duration to 3 seconds
video_duration = 5
# Get LoRA config
lora_config = next((lora for lora in loras if lora["id"] == selected_index), None)
if not lora_config:
raise ValueError(f"Invalid LoRA ID: {selected_index}")
# Generate unique ID
generation_id = str(uuid.uuid4())
# Build prompt for the LoRA
prompt = subject
# Check if Modal endpoint is configured
if not MODAL_ENDPOINT:
raise ValueError("Modal endpoint not configured - FAL_MODAL_ENDPOINT environment variable not found")
# Calculate frames based on duration and frame rate
frame_rate = 16 # WanVideo frame rate
num_frames = calculate_frames(video_duration, frame_rate)
print(f"Sending request to Modal backend: {MODAL_ENDPOINT}/fal-effects")
# Make POST request to the modal backend
response = requests.post(f"{MODAL_ENDPOINT}/fal-effects",
headers=get_modal_auth_headers(),
json={
"user_id": "anonymous", # Since we don't have user auth in this app
"image_url": image_url,
"subject": prompt, # Use the built prompt as subject
"aspect_ratio": "16:9", # Default aspect ratio for effects
"num_frames": 81,
"frames_per_second": frame_rate,
"length": str(5),
"enhance_prompt": False,
"lora_scale": 1.0,
"turbo_mode": False,
"lora_id": selected_index,
"lora_strength": 1.0,
"generation_ids": [generation_id]
}
)
if not response.ok:
error_text = response.text
try:
error_json = response.json()
error_message = error_json.get('detail') or error_json.get('error') or 'Failed to create generation'
except:
error_message = f'Failed to create generation: {error_text}'
raise ValueError(error_message)
result = response.json()
print(f"Modal backend response: {result}")
# Extract generation ID from response
if 'generation_id' in result:
return result['generation_id']
elif 'id' in result:
return result['id']
else:
# Fallback to our generated ID if the response doesn't contain one
return generation_id
except Exception as e:
print(f"Error in generate_video: {e}")
raise e
def update_selection(evt: gr.SelectData):
selected_lora = loras[evt.index]
sentence = f"Selected LoRA: {selected_lora['title']}"
return selected_lora['id'], sentence
async def handle_generation(image_input, subject, selected_index, request: gr.Request, progress=gr.Progress(track_tqdm=True)):
try:
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
# Check rate limit first
user_identifier = get_user_identifier(request)
is_allowed, remaining, reset_time = check_rate_limit(user_identifier)
if not is_allowed:
minutes = reset_time // 60
seconds = reset_time % 60
time_str = f"{minutes}m {seconds}s" if minutes > 0 else f"{seconds}s"
# Re-enable button on rate limit
yield None, None, gr.update(visible=False), gr.update(value="Generate", interactive=True)
raise gr.Error(f"Rate limit exceeded. Go to https://app.remade.ai for more generations and effects. Otherwise, you can generate {RATE_LIMIT_GENERATIONS} videos per hour. Try again in {time_str}.")
# Record this generation attempt
record_generation(user_identifier)
# Show remaining generations to user
if remaining > 0:
print(f"User {user_identifier} has {remaining} generations remaining this hour")
# First, moderate the prompt
prompt_moderation = await moderate_prompt(subject)
print(f"Prompt moderation result: {prompt_moderation}")
if prompt_moderation["isNSFW"]:
# Re-enable button on error
yield None, None, gr.update(visible=False), gr.update(value="Generate", interactive=True)
raise gr.Error(f"Content moderation failed: {prompt_moderation['reason']}")
# Then, moderate the image
image_moderation = await moderate_image(image_input)
print(f"Image moderation result: {image_moderation}")
if image_moderation["isNSFW"]:
# Re-enable button on error
yield None, None, gr.update(visible=False), gr.update(value="Generate", interactive=True)
raise gr.Error(f"Content moderation failed: {image_moderation['reason']}")
# Finally, check the combination
combined_moderation = await moderate_combined(subject, image_input)
print(f"Combined moderation result: {combined_moderation}")
if combined_moderation["isNSFW"]:
# Re-enable button on error
yield None, None, gr.update(visible=False), gr.update(value="Generate", interactive=True)
raise gr.Error(f"Content moderation failed: {combined_moderation['reason']}")
# Generate the video and get generation ID
generation_id = await generate_video(image_input, subject, selected_index)
# Poll for status updates
while True:
generation = poll_generation_status(generation_id)
if not generation:
# Re-enable button on error
yield None, None, gr.update(visible=False), gr.update(value="Generate", interactive=True)
raise ValueError(f"Generation {generation_id} not found")
# Update progress
if 'progress' in generation:
progress_value = generation['progress']
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {progress_value}; --total: 100;"><span class="progress-text">Processing: {progress_value}%</span></div></div><div class="refresh-warning">Please do not refresh this page while processing</div>'
# Check status
if generation['status'] == 'completed':
# Final yield with completed video and re-enabled button
yield generation['output_url'], generation_id, gr.update(visible=False), gr.update(value="Generate", interactive=True)
break # Exit the loop
elif generation['status'] == 'error':
# Re-enable button on error
yield None, None, gr.update(visible=False), gr.update(value="Generate", interactive=True)
raise ValueError(f"Generation failed: {generation.get('error')}")
else:
# Yield progress update with button still disabled
yield None, generation_id, gr.update(value=progress_bar, visible=True), gr.update(value="Generating...", interactive=False)
# Wait before next poll
await asyncio.sleep(2)
except Exception as e:
print(f"Error in handle_generation: {e}")
# Re-enable button on any error
yield None, None, gr.update(visible=False), gr.update(value="Generate", interactive=True)
raise e
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: auto; min-height: 350px}
#gallery .gallery-item {height: 100%; width: 100%; object-fit: cover}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #2a2a2a;border-radius: 15px;overflow: hidden;margin-bottom: 20px;position: relative;}
.progress-bar {height: 100%;background-color: #7289DA;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
.progress-text {position: absolute;width: 100%;text-align: center;top: 50%;left: 0;transform: translateY(-50%);color: #ffffff;font-weight: bold;}
.refresh-warning {color: #ff7675;font-weight: bold;text-align: center;margin-top: 5px;}
/* Dark mode Discord styling */
.discord-banner {
background: linear-gradient(135deg, #7289DA 0%, #5865F2 100%);
color: #ffffff;
padding: 20px;
border-radius: 12px;
margin: 15px 0;
text-align: center;
box-shadow: 0 4px 8px rgba(0,0,0,0.3);
}
.discord-banner h3 {
margin-top: 0;
font-size: 1.5em;
text-shadow: 0 2px 4px rgba(0,0,0,0.3);
color: #ffffff;
}
.discord-banner p {
color: #ffffff;
margin-bottom: 15px;
}
.discord-banner a {
display: inline-block;
background-color: #ffffff;
color: #5865F2;
text-decoration: none;
font-weight: bold;
padding: 10px 20px;
border-radius: 24px;
margin-top: 10px;
transition: all 0.3s ease;
box-shadow: 0 2px 8px rgba(0,0,0,0.3);
border: none;
}
.discord-banner a:hover {
transform: translateY(-3px);
box-shadow: 0 6px 12px rgba(0,0,0,0.4);
background-color: #f2f2f2;
}
.discord-banner .discord-community-btn {
background-color: #ffffff !important;
color: #5865F2 !important;
opacity: 1 !important;
font-weight: bold;
font-size: 0.9em;
padding: 8px 16px;
border-radius: 20px;
text-decoration: none;
display: inline-block;
transition: all 0.3s ease;
box-shadow: 0 2px 6px rgba(0,0,0,0.2);
}
.discord-banner .discord-community-btn:hover {
background-color: #f8f8f8 !important;
transform: translateY(-2px);
box-shadow: 0 4px 10px rgba(0,0,0,0.3);
}
.discord-feature {
background-color: #2a2a2a;
border-left: 4px solid #7289DA;
padding: 12px 15px;
margin: 10px 0;
border-radius: 0 8px 8px 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
color: #e0e0e0;
}
.discord-feature-title {
font-weight: bold;
color: #7289DA;
}
.discord-locked {
opacity: 0.7;
position: relative;
pointer-events: none;
}
.discord-locked::after {
content: "🔒 Remade Canvas exclusive";
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
background: rgba(114,137,218,0.9);
color: white;
padding: 5px 10px;
border-radius: 20px;
white-space: nowrap;
font-size: 0.9em;
font-weight: bold;
box-shadow: 0 2px 4px rgba(0,0,0,0.3);
}
.discord-benefits-list {
text-align: left;
display: inline-block;
margin: 10px 0;
color: #ffffff;
}
.discord-benefits-list li {
margin: 10px 0;
position: relative;
padding-left: 28px;
color: #ffffff;
font-weight: 500;
text-shadow: 0 1px 2px rgba(0,0,0,0.2);
}
.discord-benefits-list li::before {
content: "✨";
position: absolute;
left: 0;
color: #FFD700;
}
.locked-option {
opacity: 0.6;
cursor: not-allowed;
}
/* Warning message styling */
.warning-message {
background-color: #2a2a2a;
border-left: 4px solid #ff7675;
padding: 12px 15px;
margin: 10px 0;
border-radius: 0 8px 8px 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
color: #e0e0e0;
font-weight: bold;
}
/* Example images and upload section styling */
.upload-section {
display: flex;
gap: 20px;
margin: 20px 0;
}
.example-images-container {
flex: 1;
}
.upload-container {
flex: 1;
display: flex;
flex-direction: column;
justify-content: center;
}
.section-title {
font-weight: bold;
margin-bottom: 10px;
color: #7289DA;
}
.example-images-grid {
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 10px;
}
.example-image-item {
border-radius: 8px;
overflow: hidden;
cursor: pointer;
transition: all 0.2s ease;
border: 2px solid transparent;
}
.example-image-item:hover {
transform: scale(1.05);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
.example-image-item.selected {
border-color: #7289DA;
}
.upload-button {
margin-top: 15px;
}
'''
def get_user_identifier(request: gr.Request) -> str:
"""Get user identifier from request (IP address)"""
if request and hasattr(request, 'client') and hasattr(request.client, 'host'):
return request.client.host
return "unknown"
def get_rate_limit_status(request: gr.Request) -> str:
"""Get current rate limit status for display to user"""
try:
user_identifier = get_user_identifier(request)
is_allowed, remaining, reset_time = check_rate_limit(user_identifier)
if remaining == 0 and reset_time > 0:
minutes = reset_time // 60
seconds = reset_time % 60
time_str = f"{minutes}m {seconds}s" if minutes > 0 else f"{seconds}s"
return f"⚠️ Rate limit reached. Try again in {time_str}"
elif remaining <= 2:
return f"⚡ {remaining} generations remaining this hour"
else:
return f"✅ {remaining} generations remaining this hour"
except:
return "✅ Ready to generate"
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="indigo", neutral_hue="slate", text_size="lg")) as demo:
selected_index = gr.State(None)
current_generation_id = gr.State(None)
# Updated title with Remade Canvas theme
gr.Markdown("# Remade AI - Open Source Camera Controls")
# Updated Remade Canvas callout
gr.HTML(
"""
<div class="discord-banner">
<h3>🚀 Unlock 100s of AI Video Effects! 🎬</h3>
<p>Access Remade Canvas with Veo, Kling, and hundreds of professional video effects. Create cinematic content with the most advanced AI video models!</p>
<a href="https://app.remade.ai?utm_source=Huggingface&utm_medium=Social&utm_campaign=hugginface_space&utm_content=canvas_effects" target="_blank">Try Remade Canvas</a>
<div style="margin-top: 15px; padding-top: 15px; border-top: 1px solid rgba(255,255,255,0.7);">
<p style="font-size: 0.9em; margin-bottom: 10px;">Join our community for updates and tips:</p>
<a href="https://remade.ai/join-discord?utm_source=Huggingface&utm_medium=Social&utm_campaign=hugginface_space&utm_content=canvas_effects" target="_blank" class="discord-community-btn">Discord Community</a>
</div>
</div>
"""
)
selected_info = gr.HTML("")
with gr.Row():
with gr.Column(scale=1):
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="Select LoRA",
allow_preview=False,
columns=4,
elem_id="gallery",
show_share_button=False,
height="650px",
object_fit="contain"
)
# Updated Discord/camera controls callout
gr.HTML(
"""
<div class="discord-feature">
<span class="discord-feature-title">🎬 Remade Canvas:</span> Access 100s of effects including Veo, Kling, and advanced camera controls beyond these samples!
</div>
"""
)
gr.HTML('<div class="section-description">Click an example image or upload your own</div>')
with gr.Row():
with gr.Column(scale=1):
example_gallery = gr.Gallery(
[
("https://storage.googleapis.com/remade-v2/huggingface_assets/image_fx%20(22).jpg", "Man with angel wings"),
("https://storage.googleapis.com/remade-v2/huggingface_assets/image_fx%20(26).jpg", "Motorcyclist on the road"),
("https://storage.googleapis.com/remade-v2/huggingface_assets/image_fx%20(27).jpg", "Superhero facing away in a tunnel"),
("https://storage.googleapis.com/remade-v2/huggingface_assets/image_fx%20(75).jpg", "Girl with half her face underwater, staring at the camera"),
("https://storage.googleapis.com/remade-v2/huggingface_assets/empire_state.jpg", "Workers sitting on construction at the top of Empire State Building"),
("https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_e6472106-4e9d-4620-b41b-a9bbe4893415.png", "Cartoon boy on bike")
],
columns=3,
height="300px",
object_fit="cover"
)
with gr.Column(scale=1):
image_input = gr.Image(type="filepath", label="")
subject = gr.Textbox(label="Describe your subject", placeholder="Cat toy")
# Rate limit status display
rate_limit_status = gr.Markdown("✅ Ready to generate", elem_id="rate_limit_status")
with gr.Row():
button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
audio_button = gr.Button("Add Audio 🔒", interactive=False)
with gr.Column(scale=1):
warning_message = gr.HTML(
"""
<div class="warning-message">
⚠️ Please DO NOT refresh the page during generation. Processing camera controls takes time for best quality!
</div>
""",
visible=True
)
gr.HTML(
"""
<div class="discord-feature">
<span class="discord-feature-title">⚡ Remade Canvas:</span> Get faster generation speeds and access to Veo, Kling, and 100s of premium effects!
</div>
"""
)
progress_bar = gr.Markdown(elem_id="progress", visible=False)
output = gr.Video(interactive=False, label="Output video")
gallery.select(
update_selection,
outputs=[selected_index, selected_info]
)
# Modified function to handle example image selection
def select_example_image(evt: gr.SelectData):
"""Handle example image selection and return image URL, description, and update image source"""
example_images = [
{
"url": "https://storage.googleapis.com/remade-v2/huggingface_assets/image_fx%20(22).jpg",
"description": "Man with angel wings"
},
{
"url": "https://storage.googleapis.com/remade-v2/huggingface_assets/image_fx%20(26).jpg",
"description": "Motorcyclist on the road"
},
{
"url": "https://storage.googleapis.com/remade-v2/huggingface_assets/image_fx%20(27).jpg",
"description": "Superhero facing away in a tunnel"
},
{
"url": "https://storage.googleapis.com/remade-v2/huggingface_assets/image_fx%20(75).jpg",
"description": "Girl with half her face underwater, staring at the camera"
},
{
"url": "https://storage.googleapis.com/remade-v2/huggingface_assets/empire_state.jpg",
"description": "Workers sitting on construction at the top of Empire State Building"
},
{
"url": "https://storage.googleapis.com/remade-v2/huggingface_assets/uploads_e6472106-4e9d-4620-b41b-a9bbe4893415.png",
"description": "Cartoon boy on bike"
}
]
selected = example_images[evt.index]
# Return the URL, description, and update image source to "example"
return selected["url"], selected["description"], "example"
# Connect example gallery selection to image_input and subject
example_gallery.select(
fn=select_example_image,
outputs=[image_input, subject]
)
# Add a custom handler to check if inputs are valid
def check_inputs(subject, image_input, selected_index):
if not selected_index:
raise gr.Error("You must select a LoRA before proceeding.")
if not subject.strip():
raise gr.Error("Please describe your subject.")
if image_input is None:
raise gr.Error("Please upload an image or select an example image.")
# Function to immediately disable button
def start_generation():
return gr.update(value="Generating...", interactive=False)
# Use gr.on for the button click with validation
button.click(
fn=check_inputs,
inputs=[subject, image_input, selected_index],
outputs=None,
).success(
fn=start_generation,
inputs=None,
outputs=[button]
).success(
fn=handle_generation,
inputs=[image_input, subject, selected_index],
outputs=[output, current_generation_id, progress_bar, button]
)
# Add a click handler for the disabled audio button
audio_button.click(
fn=lambda: gr.Info("Try Remade Canvas to unlock audio generation and 100s of other effects!"),
inputs=None,
outputs=None
)
# Update rate limit status on page load
demo.load(
fn=get_rate_limit_status,
inputs=None,
outputs=[rate_limit_status]
)
def get_modal_auth_headers():
"""Get authentication headers for Modal API requests"""
if not MODAL_AUTH_TOKEN:
raise ValueError("MODAL_AUTH_TOKEN environment variable not found")
return {
'Authorization': f'Bearer {MODAL_AUTH_TOKEN}',
'Content-Type': 'application/json'
}
def check_rate_limit(user_identifier: str) -> tuple[bool, int, int]:
"""
Check if user has exceeded rate limit
Returns: (is_allowed, remaining_generations, reset_time_seconds)
"""
current_time = time.time()
user_queue = user_generations[user_identifier]
# Remove old entries outside the time window
while user_queue and current_time - user_queue[0] > RATE_LIMIT_WINDOW:
user_queue.popleft()
# Check if user has exceeded limit
if len(user_queue) >= RATE_LIMIT_GENERATIONS:
# Calculate when the oldest entry will expire
reset_time = int(user_queue[0] + RATE_LIMIT_WINDOW - current_time)
return False, 0, reset_time
remaining = RATE_LIMIT_GENERATIONS - len(user_queue)
return True, remaining, 0
def record_generation(user_identifier: str):
"""Record a new generation for the user"""
current_time = time.time()
user_generations[user_identifier].append(current_time)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=20)
demo.launch(ssr_mode=False, share=True)
|