File size: 14,176 Bytes
2d37733
9093067
 
d948455
 
 
 
 
 
 
 
 
 
 
 
9093067
d948455
 
 
 
 
2d37733
 
 
68d53f7
2d37733
68d53f7
d948455
68d53f7
d948455
 
 
2d37733
 
 
d948455
 
 
2d37733
d948455
 
 
 
 
 
 
 
 
 
 
2d37733
 
 
d948455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9093067
d948455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d37733
 
 
 
 
 
d948455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d37733
d948455
 
2d37733
 
d948455
2d37733
d948455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d37733
 
 
d948455
 
 
 
 
 
 
 
2d37733
 
 
d948455
2d37733
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
import requests
import gradio as gr
import uuid
import datetime
from supabase import create_client, Client
from supabase.lib.client_options import ClientOptions
import dotenv
from google.cloud import storage
import json
from pathlib import Path
import mimetypes
from workflow_handler import WanVideoWorkflow
from video_config import MODEL_FRAME_RATES, calculate_frames
import asyncio

dotenv.load_dotenv()

SCRIPT_DIR = Path(__file__).parent
CONFIG_PATH = SCRIPT_DIR / "config.json"
WORKFLOW_PATH = SCRIPT_DIR / "wani2v.json"

loras = [
  {
      #I suggest it to be a gif instead of an mp4!
      "image": "https://huggingface.co/Remade-AI/Squish/resolve/main/example_videos/tank_squish.mp4",
      #This is an id you can send to your backend, obviously you can change it
      "id": "06ce6840-f976-4963-9644-b6cf7f323f90",
      #This is the title that is shown on the front end
      "title": "Squish",

      "example_prompt": "In the video, a miniature rodent is presented. The rodent is held in a person's hands. The person then presses on the rodent, causing a sq41sh squish effect. The person keeps pressing down on the rodent, further showing the sq41sh squish effect.",
  },  
  {
      "image": "https://huggingface.co/Remade-AI/Rotate/resolve/main/example_videos/man_rotate.mp4",
      "id": "4ac08cfa-841e-4aa9-9022-c3fc80fb6ef4",
      "title": "Rotate",
      "example_prompt": "The video shows an elderly Asian man's head and shoulders with blurred background, performing a r0t4tion 360 degrees rotation.",
    },
    {
      "image": "https://huggingface.co/Remade-AI/Cakeify/resolve/main/example_videos/timberland_cakeify.mp4",
      "id": "b05c1dc7-a71c-4d24-b512-4877a12dea7e",
      "title": "Cakeify",
      "example_prompt": "The video opens on a woman. A knife, held by a hand, is coming into frame and hovering over the woman. The knife then begins cutting into the woman to c4k3 cakeify it. As the knife slices the woman open, the inside of the woman is revealed to be cake with chocolate layers. The knife cuts through and the contents of the woman are revealed."
    },
  
    
    
    
    
    
]

# Initialize Supabase client with async support
supabase: Client = create_client(
    os.getenv('SUPABASE_URL'),
    os.getenv('SUPABASE_KEY'),
   
)

def initialize_gcs():
    """Initialize Google Cloud Storage client with credentials from environment"""
    try:
        # Parse service account JSON from environment variable
        service_account_json = os.getenv('SERVICE_ACCOUNT_JSON')
        if not service_account_json:
            raise ValueError("SERVICE_ACCOUNT_JSON environment variable not found")
        
        credentials_info = json.loads(service_account_json)
        
        # Initialize storage client
        storage_client = storage.Client.from_service_account_info(credentials_info)
        print("Successfully initialized Google Cloud Storage client")
        return storage_client
    except Exception as e:
        print(f"Error initializing Google Cloud Storage: {e}")
        raise

def upload_to_gcs(file_path, content_type=None, folder='user_uploads'):
    """
    Uploads a file to Google Cloud Storage
    Args:
        file_path: Path to the file to upload
        content_type: MIME type of the file (optional)
        folder: Folder path in bucket (default: 'user_uploads')
    Returns:
        str: Public URL of the uploaded file
    """
    try:
        bucket_name = 'remade-v2'
        storage_client = initialize_gcs()
        bucket = storage_client.bucket(bucket_name)

        # Get file extension and generate unique filename
        file_extension = Path(file_path).suffix
        if not content_type:
            content_type = mimetypes.guess_type(file_path)[0] or 'application/octet-stream'
        
        # Validate file type
        valid_types = ['image/jpeg', 'image/png', 'image/gif']
        if content_type not in valid_types:
            raise ValueError("Invalid file type. Please upload a JPG, PNG or GIF image.")

        # Generate unique filename with proper path structure
        filename = f"{str(uuid.uuid4())}{file_extension}"
        file_path_in_gcs = f"{folder}/{filename}"
        
        # Create blob and set metadata
        blob = bucket.blob(file_path_in_gcs)
        blob.content_type = content_type
        blob.cache_control = 'public, max-age=31536000'
        
        print(f'Uploading file to GCS: {file_path_in_gcs}')
        
        # Upload the file
        blob.upload_from_filename(
            file_path,
            timeout=120  # 2 minute timeout
        )
        
        # Generate public URL with correct path format
        image_url = f"https://storage.googleapis.com/{bucket_name}/{file_path_in_gcs}"
        print(f"Successfully uploaded to GCS: {image_url}")
        return image_url

    except Exception as e:
        print(f"Error uploading to GCS: {e}")
        raise ValueError(f"Failed to upload image to storage: {str(e)}")

def build_lora_prompt(subject, lora_id):
    """
    Builds a standardized prompt based on the selected LoRA and subject
    """
    # Get LoRA config
    lora_config = next((lora for lora in loras if lora["id"] == lora_id), None)
    if not lora_config:
        raise ValueError(f"Invalid LoRA ID: {lora_id}")
    
    if lora_id == "06ce6840-f976-4963-9644-b6cf7f323f90":  # Squish
        return (
            f"In the video, a miniature {subject} is presented. "
            f"The {subject} is held in a person's hands. "
            f"The person then presses on the {subject}, causing a sq41sh squish effect. "
            f"The person keeps pressing down on the {subject}, further showing the sq41sh squish effect."
        )
    
    elif lora_id == "4ac08cfa-841e-4aa9-9022-c3fc80fb6ef4":  # Rotate
        return (
            f"The video shows a {subject} performing a r0t4tion 360 degrees rotation."
        )
    
    elif lora_id == "b05c1dc7-a71c-4d24-b512-4877a12dea7e":  # Cakeify
        return (
            f"The video opens on a {subject}. A knife, held by a hand, is coming into frame "
            f"and hovering over the {subject}. The knife then begins cutting into the {subject} "
            f"to c4k3 cakeify it. As the knife slices the {subject} open, the inside of the "
            f"{subject} is revealed to be cake with chocolate layers. The knife cuts through "
            f"and the contents of the {subject} are revealed."
        )
    
    else:
        raise ValueError(f"Unknown LoRA ID: {lora_id}")

def poll_generation_status(generation_id):
    """Poll generation status from database"""
    try:
        # Query the database for the current status
        response = supabase.table('generations') \
            .select('*') \
            .eq('generation_id', generation_id) \
            .execute()
        
        if not response.data:
            return None
        
        return response.data[0]
    except Exception as e:
        print(f"Error polling generation status: {e}")
        raise e

async def generate_video(input_image, subject, duration, selected_index, progress=gr.Progress()):
    try:
        # Initialize workflow handler with explicit paths
        workflow_handler = WanVideoWorkflow(
            supabase,
            config_path=str(CONFIG_PATH),
            workflow_path=str(WORKFLOW_PATH)
        )
        
        # Upload image to GCS and get public URL
        image_url = upload_to_gcs(input_image)
        
        # Map duration selection to actual seconds
        duration_mapping = {
            "Short (3s)": 3,
            "Long (5s)": 5
        }
        video_duration = duration_mapping[duration]
        
        # Get LoRA config
        lora_config = next((lora for lora in loras if lora["id"] == selected_index), None)
        if not lora_config:
            raise ValueError(f"Invalid LoRA ID: {selected_index}")

        # Generate unique ID
        generation_id = str(uuid.uuid4())

        # Update workflow
        prompt = build_lora_prompt(subject, selected_index)
        workflow_handler.update_prompt(prompt)
        workflow_handler.update_input_image(image_url)
        await workflow_handler.update_lora(lora_config)
        workflow_handler.update_length(video_duration)
        workflow_handler.update_output_name(generation_id)

        # Get final workflow
        workflow = workflow_handler.get_workflow()

        # Store generation data in Supabase
        generation_data = {
            "generation_id": generation_id,
            "user_id": "anonymous",
            "status": "queued",
            "progress": 0,
            "worker_id": None,
            "created_at": datetime.datetime.utcnow().isoformat(),
            "message": {
                "generationId": generation_id,
                "workflow": {
                    "prompt": workflow
                }
            },
            "metadata": {
                "prompt": {
                    "original": subject,
                    "enhanced": subject
                },
                "lora": {
                    "id": selected_index,
                    "strength": 1.0,
                    "name": lora_config["title"]
                },
                "workflow": "img2vid",
                "dimensions": None,
                "input_image_url": image_url,
                "video_length": {"duration": video_duration},
                "platform": "huggingface"
            },
            "error": None,
            "output_url": None,
            "batch_id": None
        }
        
        # Remove await - the execute() method returns the response directly
        response = supabase.table('generations').insert(generation_data).execute()
        print(f"Stored generation data with ID: {generation_id}")
        
        # Return generation ID for tracking
        return generation_id
        
    except Exception as e:
        print(f"Error in generate_video: {e}")
        raise e

def update_selection(evt: gr.SelectData):
  selected_lora = loras[evt.index]
  sentence = f"Selected LoRA: {selected_lora['title']}"
  return selected_lora['id'], sentence

async def handle_generation(input_image, subject, duration, selected_index, progress=gr.Progress(track_tqdm=True)):
    try:
        if selected_index is None:
            raise gr.Error("You must select a LoRA before proceeding.")
            
        # Generate the video and get generation ID
        generation_id = await generate_video(input_image, subject, duration, selected_index)
        
        # Poll for status updates
        while True:
            generation = poll_generation_status(generation_id)
            
            if not generation:
                raise ValueError(f"Generation {generation_id} not found")
                
            # Update progress
            if 'progress' in generation:
                progress_value = generation['progress']
                progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {progress_value}; --total: 100;"></div></div>'
                
                # Check status
                if generation['status'] == 'completed':
                    # Final yield with completed video
                    yield generation['output_url'], generation_id, gr.update(visible=False)
                    break  # Exit the loop
                elif generation['status'] == 'error':
                    raise ValueError(f"Generation failed: {generation.get('error')}")
                else:
                    # Yield progress update
                    yield None, generation_id, gr.update(value=progress_bar, visible=True)
            
            # Wait before next poll
            await asyncio.sleep(2)
            
    except Exception as e:
        print(f"Error in handle_generation: {e}")
        raise e

css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''

with gr.Blocks(css=css) as demo:
    selected_index = gr.State(None)
    current_generation_id = gr.State(None)
    
    gr.Markdown("# Remade AI - Wan 2.1 I2V effects LoRAs ")
    selected_info = gr.HTML("")
    
    with gr.Row():
        with gr.Column():
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="Select LoRA",
                allow_preview=False,
                columns=4,
                elem_id="gallery",
                show_share_button=False,
                height=350
            )
            input_image = gr.Image(type="filepath")
            subject = gr.Textbox(label="Describe your subject", placeholder="Cat toy")
            duration = gr.Radio(["Short (3s)", "Long (5s)"], label="Duration", value="Short (3s)")
            button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
            
        with gr.Column():
            progress_bar = gr.Markdown(elem_id="progress", visible=False)
            output = gr.Video(interactive=False, label="Output video")
    
    gallery.select(
        update_selection,
        outputs=[selected_index, selected_info]
    )
    
    # Use gr.on for the button click to match the example
    gr.on(
        triggers=[button.click],
        fn=handle_generation,
        inputs=[input_image, subject, duration, selected_index],
        outputs=[output, current_generation_id, progress_bar]
    )

if __name__ == "__main__":
    demo.queue()
    demo.launch()