Spaces:
Running
Running
File size: 14,176 Bytes
2d37733 9093067 d948455 9093067 d948455 2d37733 68d53f7 2d37733 68d53f7 d948455 68d53f7 d948455 2d37733 d948455 2d37733 d948455 2d37733 d948455 9093067 d948455 2d37733 d948455 2d37733 d948455 2d37733 d948455 2d37733 d948455 2d37733 d948455 2d37733 d948455 2d37733 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os
import requests
import gradio as gr
import uuid
import datetime
from supabase import create_client, Client
from supabase.lib.client_options import ClientOptions
import dotenv
from google.cloud import storage
import json
from pathlib import Path
import mimetypes
from workflow_handler import WanVideoWorkflow
from video_config import MODEL_FRAME_RATES, calculate_frames
import asyncio
dotenv.load_dotenv()
SCRIPT_DIR = Path(__file__).parent
CONFIG_PATH = SCRIPT_DIR / "config.json"
WORKFLOW_PATH = SCRIPT_DIR / "wani2v.json"
loras = [
{
#I suggest it to be a gif instead of an mp4!
"image": "https://huggingface.co/Remade-AI/Squish/resolve/main/example_videos/tank_squish.mp4",
#This is an id you can send to your backend, obviously you can change it
"id": "06ce6840-f976-4963-9644-b6cf7f323f90",
#This is the title that is shown on the front end
"title": "Squish",
"example_prompt": "In the video, a miniature rodent is presented. The rodent is held in a person's hands. The person then presses on the rodent, causing a sq41sh squish effect. The person keeps pressing down on the rodent, further showing the sq41sh squish effect.",
},
{
"image": "https://huggingface.co/Remade-AI/Rotate/resolve/main/example_videos/man_rotate.mp4",
"id": "4ac08cfa-841e-4aa9-9022-c3fc80fb6ef4",
"title": "Rotate",
"example_prompt": "The video shows an elderly Asian man's head and shoulders with blurred background, performing a r0t4tion 360 degrees rotation.",
},
{
"image": "https://huggingface.co/Remade-AI/Cakeify/resolve/main/example_videos/timberland_cakeify.mp4",
"id": "b05c1dc7-a71c-4d24-b512-4877a12dea7e",
"title": "Cakeify",
"example_prompt": "The video opens on a woman. A knife, held by a hand, is coming into frame and hovering over the woman. The knife then begins cutting into the woman to c4k3 cakeify it. As the knife slices the woman open, the inside of the woman is revealed to be cake with chocolate layers. The knife cuts through and the contents of the woman are revealed."
},
]
# Initialize Supabase client with async support
supabase: Client = create_client(
os.getenv('SUPABASE_URL'),
os.getenv('SUPABASE_KEY'),
)
def initialize_gcs():
"""Initialize Google Cloud Storage client with credentials from environment"""
try:
# Parse service account JSON from environment variable
service_account_json = os.getenv('SERVICE_ACCOUNT_JSON')
if not service_account_json:
raise ValueError("SERVICE_ACCOUNT_JSON environment variable not found")
credentials_info = json.loads(service_account_json)
# Initialize storage client
storage_client = storage.Client.from_service_account_info(credentials_info)
print("Successfully initialized Google Cloud Storage client")
return storage_client
except Exception as e:
print(f"Error initializing Google Cloud Storage: {e}")
raise
def upload_to_gcs(file_path, content_type=None, folder='user_uploads'):
"""
Uploads a file to Google Cloud Storage
Args:
file_path: Path to the file to upload
content_type: MIME type of the file (optional)
folder: Folder path in bucket (default: 'user_uploads')
Returns:
str: Public URL of the uploaded file
"""
try:
bucket_name = 'remade-v2'
storage_client = initialize_gcs()
bucket = storage_client.bucket(bucket_name)
# Get file extension and generate unique filename
file_extension = Path(file_path).suffix
if not content_type:
content_type = mimetypes.guess_type(file_path)[0] or 'application/octet-stream'
# Validate file type
valid_types = ['image/jpeg', 'image/png', 'image/gif']
if content_type not in valid_types:
raise ValueError("Invalid file type. Please upload a JPG, PNG or GIF image.")
# Generate unique filename with proper path structure
filename = f"{str(uuid.uuid4())}{file_extension}"
file_path_in_gcs = f"{folder}/{filename}"
# Create blob and set metadata
blob = bucket.blob(file_path_in_gcs)
blob.content_type = content_type
blob.cache_control = 'public, max-age=31536000'
print(f'Uploading file to GCS: {file_path_in_gcs}')
# Upload the file
blob.upload_from_filename(
file_path,
timeout=120 # 2 minute timeout
)
# Generate public URL with correct path format
image_url = f"https://storage.googleapis.com/{bucket_name}/{file_path_in_gcs}"
print(f"Successfully uploaded to GCS: {image_url}")
return image_url
except Exception as e:
print(f"Error uploading to GCS: {e}")
raise ValueError(f"Failed to upload image to storage: {str(e)}")
def build_lora_prompt(subject, lora_id):
"""
Builds a standardized prompt based on the selected LoRA and subject
"""
# Get LoRA config
lora_config = next((lora for lora in loras if lora["id"] == lora_id), None)
if not lora_config:
raise ValueError(f"Invalid LoRA ID: {lora_id}")
if lora_id == "06ce6840-f976-4963-9644-b6cf7f323f90": # Squish
return (
f"In the video, a miniature {subject} is presented. "
f"The {subject} is held in a person's hands. "
f"The person then presses on the {subject}, causing a sq41sh squish effect. "
f"The person keeps pressing down on the {subject}, further showing the sq41sh squish effect."
)
elif lora_id == "4ac08cfa-841e-4aa9-9022-c3fc80fb6ef4": # Rotate
return (
f"The video shows a {subject} performing a r0t4tion 360 degrees rotation."
)
elif lora_id == "b05c1dc7-a71c-4d24-b512-4877a12dea7e": # Cakeify
return (
f"The video opens on a {subject}. A knife, held by a hand, is coming into frame "
f"and hovering over the {subject}. The knife then begins cutting into the {subject} "
f"to c4k3 cakeify it. As the knife slices the {subject} open, the inside of the "
f"{subject} is revealed to be cake with chocolate layers. The knife cuts through "
f"and the contents of the {subject} are revealed."
)
else:
raise ValueError(f"Unknown LoRA ID: {lora_id}")
def poll_generation_status(generation_id):
"""Poll generation status from database"""
try:
# Query the database for the current status
response = supabase.table('generations') \
.select('*') \
.eq('generation_id', generation_id) \
.execute()
if not response.data:
return None
return response.data[0]
except Exception as e:
print(f"Error polling generation status: {e}")
raise e
async def generate_video(input_image, subject, duration, selected_index, progress=gr.Progress()):
try:
# Initialize workflow handler with explicit paths
workflow_handler = WanVideoWorkflow(
supabase,
config_path=str(CONFIG_PATH),
workflow_path=str(WORKFLOW_PATH)
)
# Upload image to GCS and get public URL
image_url = upload_to_gcs(input_image)
# Map duration selection to actual seconds
duration_mapping = {
"Short (3s)": 3,
"Long (5s)": 5
}
video_duration = duration_mapping[duration]
# Get LoRA config
lora_config = next((lora for lora in loras if lora["id"] == selected_index), None)
if not lora_config:
raise ValueError(f"Invalid LoRA ID: {selected_index}")
# Generate unique ID
generation_id = str(uuid.uuid4())
# Update workflow
prompt = build_lora_prompt(subject, selected_index)
workflow_handler.update_prompt(prompt)
workflow_handler.update_input_image(image_url)
await workflow_handler.update_lora(lora_config)
workflow_handler.update_length(video_duration)
workflow_handler.update_output_name(generation_id)
# Get final workflow
workflow = workflow_handler.get_workflow()
# Store generation data in Supabase
generation_data = {
"generation_id": generation_id,
"user_id": "anonymous",
"status": "queued",
"progress": 0,
"worker_id": None,
"created_at": datetime.datetime.utcnow().isoformat(),
"message": {
"generationId": generation_id,
"workflow": {
"prompt": workflow
}
},
"metadata": {
"prompt": {
"original": subject,
"enhanced": subject
},
"lora": {
"id": selected_index,
"strength": 1.0,
"name": lora_config["title"]
},
"workflow": "img2vid",
"dimensions": None,
"input_image_url": image_url,
"video_length": {"duration": video_duration},
"platform": "huggingface"
},
"error": None,
"output_url": None,
"batch_id": None
}
# Remove await - the execute() method returns the response directly
response = supabase.table('generations').insert(generation_data).execute()
print(f"Stored generation data with ID: {generation_id}")
# Return generation ID for tracking
return generation_id
except Exception as e:
print(f"Error in generate_video: {e}")
raise e
def update_selection(evt: gr.SelectData):
selected_lora = loras[evt.index]
sentence = f"Selected LoRA: {selected_lora['title']}"
return selected_lora['id'], sentence
async def handle_generation(input_image, subject, duration, selected_index, progress=gr.Progress(track_tqdm=True)):
try:
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
# Generate the video and get generation ID
generation_id = await generate_video(input_image, subject, duration, selected_index)
# Poll for status updates
while True:
generation = poll_generation_status(generation_id)
if not generation:
raise ValueError(f"Generation {generation_id} not found")
# Update progress
if 'progress' in generation:
progress_value = generation['progress']
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {progress_value}; --total: 100;"></div></div>'
# Check status
if generation['status'] == 'completed':
# Final yield with completed video
yield generation['output_url'], generation_id, gr.update(visible=False)
break # Exit the loop
elif generation['status'] == 'error':
raise ValueError(f"Generation failed: {generation.get('error')}")
else:
# Yield progress update
yield None, generation_id, gr.update(value=progress_bar, visible=True)
# Wait before next poll
await asyncio.sleep(2)
except Exception as e:
print(f"Error in handle_generation: {e}")
raise e
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''
with gr.Blocks(css=css) as demo:
selected_index = gr.State(None)
current_generation_id = gr.State(None)
gr.Markdown("# Remade AI - Wan 2.1 I2V effects LoRAs ")
selected_info = gr.HTML("")
with gr.Row():
with gr.Column():
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="Select LoRA",
allow_preview=False,
columns=4,
elem_id="gallery",
show_share_button=False,
height=350
)
input_image = gr.Image(type="filepath")
subject = gr.Textbox(label="Describe your subject", placeholder="Cat toy")
duration = gr.Radio(["Short (3s)", "Long (5s)"], label="Duration", value="Short (3s)")
button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress", visible=False)
output = gr.Video(interactive=False, label="Output video")
gallery.select(
update_selection,
outputs=[selected_index, selected_info]
)
# Use gr.on for the button click to match the example
gr.on(
triggers=[button.click],
fn=handle_generation,
inputs=[input_image, subject, duration, selected_index],
outputs=[output, current_generation_id, progress_bar]
)
if __name__ == "__main__":
demo.queue()
demo.launch()
|