File size: 7,926 Bytes
a16c41f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80f1b3b
49b4640
a16c41f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80f1b3b
a16c41f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14224c9
a16c41f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265d2a4
a16c41f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright 2020 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ROUGE metric from Google Research github repo. """

# The dependencies in https://github.com/google-research/google-research/blob/master/rouge/requirements.txt
from collections.abc import Callable
from string import punctuation
from typing import List

import absl  # Here to have a nice missing dependency error message early on
import datasets
import evaluate
import nltk  # Here to have a nice missing dependency error message early on
import numpy  # Here to have a nice missing dependency error message early on
import six  # Here to have a nice missing dependency error message early on
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from rouge_score import rouge_scorer, scoring
nltk.download('stopwords')
nltk.download('punkt_tab')

_CITATION = """\
@inproceedings{lin-2004-rouge,
    title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
    author = "Lin, Chin-Yew",
    booktitle = "Text Summarization Branches Out",
    month = jul,
    year = "2004",
    address = "Barcelona, Spain",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/W04-1013",
    pages = "74--81",
}
"""

_DESCRIPTION = """\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.

Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.

This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
"""

_KWARGS_DESCRIPTION = """
Calculates average rouge scores for a list of hypotheses and references
Args:
    predictions: list of predictions to score. Each prediction
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
    rouge_types: A list of rouge types to calculate.
        Valid names:
        `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,
        `"rougeL"`: Longest common subsequence based scoring.
        `"rougeLsum"`: rougeLsum splits text using `"\n"`.
        See details in https://github.com/huggingface/datasets/issues/617
    use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
    use_aggregator: Return aggregates if this is set to True
Returns:
    rouge1: rouge_1 (f1),
    rouge2: rouge_2 (f1),
    rougeL: rouge_l (f1),
    rougeLsum: rouge_lsum (f1)
Examples:

    >>> rouge = evaluate.load('rouge')
    >>> predictions = ["hello there", "general kenobi"]
    >>> references = ["hello there", "general kenobi"]
    >>> results = rouge.compute(predictions=predictions, references=references)
    >>> print(results)
    {'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}
"""



def tokenize_normalize_ru(
        row, 
        normalizer_foo: Callable, 
        russian_stopwords: List[str]
        ) -> List[str]:
    tokenized_row = [
        normalizer_foo(word)
        # morpher.parse(word)[0].normal_form
        for word in word_tokenize(row.lower())
        if word not in russian_stopwords
        # check in list of words
        and word not in punctuation
        # check in string of symbols
    ]
    return tokenized_row

class Tokenizer:
    """Helper class to wrap a callable into a class with a `tokenize` method as used by rouge-score."""

    def __init__(self, tokenizer_func=tokenize_normalize_ru, word_normalizer_foo=None, language="russian"):
        self.tokenizer_func = tokenizer_func
        self.word_normalizer_foo = word_normalizer_foo
        if self.word_normalizer_foo is None:
            self.word_normalizer_foo = nltk.stem.SnowballStemmer(language).stem
        self.stopwords = stopwords.words(language)

    def tokenize(self, text):
        return self.tokenizer_func(
            text,
            self.word_normalizer_foo,
            self.stopwords
        )


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Rouge(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=[
                datasets.Features(
                    {
                        "predictions": datasets.Value("string", id="sequence"),
                        "references": datasets.Sequence(datasets.Value("string", id="sequence")),
                    }
                ),
                datasets.Features(
                    {
                        "predictions": datasets.Value("string", id="sequence"),
                        "references": datasets.Value("string", id="sequence"),
                    }
                ),
            ],
            codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"],
            reference_urls=[
                "https://en.wikipedia.org/wiki/ROUGE_(metric)",
                "https://github.com/google-research/google-research/tree/master/rouge",
            ],
        )

    def _compute(
        self, predictions, references, rouge_types=None, use_aggregator=True, use_stemmer=False, tokenizer=None
    ):
        if rouge_types is None:
            rouge_types = ["rouge1", "rouge2", "rougeL", "rougeLsum"]

        multi_ref = isinstance(references[0], list)

        tokenizer = Tokenizer(tokenize_normalize_ru)

        scorer = rouge_scorer.RougeScorer(rouge_types=rouge_types, use_stemmer=use_stemmer, tokenizer=tokenizer)
        if use_aggregator:
            aggregator = scoring.BootstrapAggregator()
        else:
            scores = []

        for ref, pred in zip(references, predictions):
            if multi_ref:
                score = scorer.score_multi(ref, pred)
            else:
                score = scorer.score(ref, pred)
            if use_aggregator:
                aggregator.add_scores(score)
            else:
                scores.append(score)

        if use_aggregator:
            result = aggregator.aggregate()
            for key in result:
                metrics = {
                    "recall": result[key].mid.recall,
                    "precision": result[key].mid.precision,
                    "fmeasure": result[key].mid.fmeasure
                }
                result[key] = metrics

        else:
            result = {}
            for key in scores[0]:
                transposed_scores = list(zip(*((score[key].recall,
                                                 score[key].precision,
                                                 score[key].fmeasure) for score in scores)))
                
                metrics = {
                    "recall": transposed_scores[0],
                    "precision": transposed_scores[1],
                    "fmeasure": transposed_scores[2]
                }
                result[key] = metrics

        return result