# Copyright 2020 The HuggingFace Evaluate Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ROUGE metric from Google Research github repo. """ # The dependencies in https://github.com/google-research/google-research/blob/master/rouge/requirements.txt from collections.abc import Callable from string import punctuation from typing import List import absl # Here to have a nice missing dependency error message early on import datasets import evaluate import nltk # Here to have a nice missing dependency error message early on import numpy # Here to have a nice missing dependency error message early on import six # Here to have a nice missing dependency error message early on from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from rouge_score import rouge_scorer, scoring _CITATION = """\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } """ _DESCRIPTION = """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ _KWARGS_DESCRIPTION = """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLsum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (f1), rouge2: rouge_2 (f1), rougeL: rouge_l (f1), rougeLsum: rouge_lsum (f1) Examples: >>> rouge = evaluate.load('rouge') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(results) {'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0} """ def tokenize_normalize_ru( row, normalizer_foo: Callable, russian_stopwords: List[str] ) -> List[str]: tokenized_row = [ normalizer_foo(word) # morpher.parse(word)[0].normal_form for word in word_tokenize(row.lower()) if word not in russian_stopwords # check in list of words and word not in punctuation # check in string of symbols ] return tokenized_row class Tokenizer: """Helper class to wrap a callable into a class with a `tokenize` method as used by rouge-score.""" def __init__(self, tokenizer_func, word_normalizer_foo=None, language="russian"): self.tokenizer_func = tokenizer_func self.word_normalizer_foo = word_normalizer_foo if self.word_normalizer_foo is None: self.word_normalizer_foo = nltk.stem.SnowballStemmer(language).stem self.stopwords = stopwords.words(language) def tokenize(self, text): return self.tokenizer_func( text, self.word_normalizer_foo, self.stopwords ) @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Rouge(evaluate.Metric): def _info(self): return evaluate.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=[ datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence")), } ), datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), ], codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"], reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ], ) def _compute( self, predictions, references, rouge_types=None, use_aggregator=True, use_stemmer=False, tokenizer=None ): if rouge_types is None: rouge_types = ["rouge1", "rouge2", "rougeL", "rougeLsum"] multi_ref = isinstance(references[0], list) if tokenizer is not None: tokenizer = Tokenizer(tokenizer) scorer = rouge_scorer.RougeScorer(rouge_types=rouge_types, use_stemmer=use_stemmer, tokenizer=tokenizer) if use_aggregator: aggregator = scoring.BootstrapAggregator() else: scores = [] for ref, pred in zip(references, predictions): if multi_ref: score = scorer.score_multi(ref, pred) else: score = scorer.score(ref, pred) if use_aggregator: aggregator.add_scores(score) else: scores.append(score) if use_aggregator: result = aggregator.aggregate() for key in result: metrics = { "recall": result[key].mid.recall, "precision": result[key].mid.precision, "fmeasure": result[key].mid.fmeasure } result[key] = metrics else: result = {} for key in scores[0]: transposed_scores = list(zip(*((score[key].recall, score[key].precision, score[key].fmeasure) for score in scores))) metrics = { "recall": transposed_scores[0], "precision": transposed_scores[1], "fmeasure": transposed_scores[2] } result[key] = metrics return result