File size: 3,765 Bytes
a9cce51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Importing necessary libraries\n",
    "from datasets import load_dataset, ClassLabel\n",
    "from transformers import AutoTokenizer\n",
    "from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments\n",
    "import torch\n",
    "\n",
    "# Load dataset\n",
    "dataset = load_dataset(\"McAuley-Lab/Amazon-Reviews-2023\", \"raw_review_Appliances\", trust_remote_code=True, split=\"full\")\n",
    "dataset = dataset.remove_columns(['title', 'images', 'asin', 'parent_asin', 'user_id', 'timestamp', 'helpful_vote', 'verified_purchase'])\n",
    "dataset = dataset.rename_column('rating', 'label')\n",
    "dataset = dataset.cast_column('label', ClassLabel(num_classes=6))\n",
    "\n",
    "# Load pre-trained tokenizer\n",
    "tokenizer = AutoTokenizer.from_pretrained('roberta-base')\n",
    "\n",
    "# Define tokenization function\n",
    "def tokenize_function(examples):\n",
    "    return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)\n",
    "\n",
    "# Apply tokenization\n",
    "tokenized_datasets = dataset.map(tokenize_function, batched=True)\n",
    "tokenized_datasets = tokenized_datasets.shuffle()\n",
    "print(tokenized_datasets)\n",
    "\n",
    "# Load pre-trained BERT model for sequence classification\n",
    "model = AutoModelForSequenceClassification.from_pretrained('roberta-base', num_labels=6)\n",
    "\n",
    "# Define training arguments\n",
    "training_args = TrainingArguments(\n",
    "    output_dir='./results',\n",
    "    num_train_epochs=10,\n",
    "    per_device_train_batch_size=16,\n",
    "    per_device_eval_batch_size=16,\n",
    "    evaluation_strategy='epoch',\n",
    "    logging_dir='./logs',\n",
    ")\n",
    "\n",
    "# Create trainer instance\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=tokenized_datasets.select(range(1000)),\n",
    "    eval_dataset=tokenized_datasets.select(range(1001, 2001)),\n",
    ")\n",
    "\n",
    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "model.to(device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.metrics import accuracy_score, precision_recall_fscore_support\n",
    "\n",
    "# Define function to compute metrics\n",
    "def compute_metrics(pred):\n",
    "    labels = pred.label_ids\n",
    "    preds = pred.predictions.argmax(-1)\n",
    "    precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')\n",
    "    acc = accuracy_score(labels, preds)\n",
    "    return {'accuracy': acc, 'f1': f1, 'precision': precision, 'recall': recall}\n",
    "\n",
    "# Update trainer to include custom metrics\n",
    "trainer.compute_metrics = compute_metrics\n",
    "\n",
    "# Evaluate the model\n",
    "eval_result = trainer.evaluate()\n",
    "print(eval_result)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Save the fine-tuned model and tokenizer\n",
    "trainer.save_model('roberta-rating')\n",
    "tokenizer.save_pretrained('roberta-rating')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "SolutionsInPR",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "name": "python",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}