Jan90 commited on
Commit
29e3151
·
verified ·
1 Parent(s): 6100bab

Delete app(0,1).py

Browse files
Files changed (1) hide show
  1. app(0,1).py +0 -118
app(0,1).py DELETED
@@ -1,118 +0,0 @@
1
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, TextClassificationPipeline
2
- import torch
3
- import gradio as gr
4
- from openpyxl import load_workbook
5
- from numpy import mean
6
-
7
- # Load tokenizers and models
8
- tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization")
9
- model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization")
10
-
11
- tokenizer_keywords = AutoTokenizer.from_pretrained("transformer3/H2-keywordextractor")
12
- model_keywords = AutoModelForSeq2SeqLM.from_pretrained("transformer3/H2-keywordextractor")
13
-
14
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
- new_model = AutoModelForSequenceClassification.from_pretrained('roberta-rating')
16
- new_tokenizer = AutoTokenizer.from_pretrained('roberta-rating')
17
-
18
- classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer, device=device)
19
-
20
- label_mapping = {1: '1/5', 2: '2/5', 3: '3/5', 4: '4/5', 5: '5/5'}
21
-
22
- # Function to parse Excel file
23
- def parse_xl(file_path):
24
- cells = []
25
-
26
- workbook = load_workbook(filename=file_path)
27
- for sheet in workbook.worksheets:
28
- for row in sheet.iter_rows():
29
- for cell in row:
30
- if cell.value != None:
31
- cells.append(cell.value)
32
-
33
- return cells
34
-
35
- # Function to evaluate reviews from Excel file
36
- def evaluate(file):
37
- reviews = parse_xl(file)
38
- ratings = []
39
- text = ""
40
- sentiments = []
41
-
42
- for review in reviews:
43
- rating = int(classifier(review)[0]['label'].split('_')[1])
44
- ratings.append(rating)
45
- text += review
46
- text += " "
47
-
48
- sentiment = classifier(review)[0]['label']
49
- sentiment_label = "Positive" if sentiment == "LABEL_4" or sentiment == "LABEL_5" else "Negative" if sentiment == "LABEL_1" or sentiment == "LABEL_2" else "Neutral"
50
- sentiments.append(sentiment_label)
51
-
52
- overall_sentiment = "Positive" if sentiments.count("Positive") > sentiments.count("Negative") else "Negative" if sentiments.count("Negative") > sentiments.count("Positive") else "Neutral"
53
-
54
- inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt")
55
- summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=10, max_length=50)
56
- summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
57
-
58
- # Modify the summary to third person
59
- summary = summary.replace("I", "He/She").replace("my", "his/her").replace("me", "him/her")
60
-
61
- inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors="pt")
62
- summary_ids_keywords = model_keywords.generate(inputs_keywords["input_ids"], num_beams=2, min_length=0, max_length=100)
63
- keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
64
-
65
- return round(mean(ratings), 2), summary, keywords, overall_sentiment
66
-
67
- # Function to test a single text input
68
- def test_area(text):
69
- inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt")
70
- summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=10, max_length=50)
71
- summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
72
-
73
- # Modify the summary to third person
74
- summary = summary.replace("I", "He/She").replace("my", "his/her").replace("me", "him/her")
75
-
76
- inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors="pt")
77
- summary_ids_keywords = model_keywords.generate(inputs_keywords["input_ids"], num_beams=2, min_length=0, max_length=100)
78
- keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
79
-
80
- sentiment = classifier(text)[0]['label']
81
- sentiment_label = "Positive" if sentiment == "LABEL_4" or sentiment == "LABEL_5" else "Negative" if sentiment == "LABEL_1" or sentiment == "LABEL_2" else "Neutral"
82
-
83
- rating = int(classifier(text)[0]['label'].split('_')[1])
84
-
85
- return rating, summary, keywords, sentiment_label
86
-
87
- # Main interface
88
- main_interface = gr.Interface(
89
- fn=evaluate,
90
- inputs=gr.File(label="Reviews"),
91
- outputs=[gr.Textbox(label="Overall Rating"), gr.Textbox(label="Summary"), gr.Textbox(label="Keywords"), gr.Textbox(label="Overall Sentiment")],
92
- title='Summarize Reviews',
93
- description="Evaluate and summarize collection of reviews. Reviews are submitted as an Excel file, where each review is in its own cell."
94
- )
95
-
96
- # Testing area interface
97
- testing_interface = gr.Interface(
98
- fn=test_area,
99
- inputs=gr.Textbox(label="Input Text"),
100
- outputs=[gr.Textbox(label="Rating"), gr.Textbox(label="Summary"), gr.Textbox(label="Keywords"), gr.Textbox(label="Sentiment")],
101
- title='Testing Area',
102
- description="Test the summarization, keyword extraction, sentiment analysis, and rating on custom text input."
103
- )
104
-
105
- # Combine interfaces into a tabbed interface with a sidebar
106
- with gr.Blocks() as demo:
107
- with gr.Row():
108
- with gr.Column(scale=1):
109
- gr.Markdown("## Sidebar")
110
- gr.Button("Button 1")
111
- gr.Button("Button 2")
112
- with gr.Column(scale=4):
113
- iface = gr.TabbedInterface(
114
- [main_interface, testing_interface],
115
- ["Summarize Reviews", "Testing Area"]
116
- )
117
-
118
- demo.launch(share=True)