Spaces:
Running
on
Zero
Running
on
Zero
Update TTSModel to load modules and model files from v0.19 directory
Browse files- deprecated copy.py +0 -435
- tts_model.py +3 -3
deprecated copy.py
DELETED
@@ -1,435 +0,0 @@
|
|
1 |
-
# import os
|
2 |
-
# import gradio as gr
|
3 |
-
# import time
|
4 |
-
# import math
|
5 |
-
# import logging
|
6 |
-
# import matplotlib.pyplot as plt
|
7 |
-
# import numpy as np
|
8 |
-
# # from lib.mock_tts import MockTTSModel
|
9 |
-
# from lib import format_audio_output
|
10 |
-
# from lib.ui_content import header_html, demo_text_info
|
11 |
-
# from lib.book_utils import get_available_books, get_book_info, get_chapter_text
|
12 |
-
# from lib.text_utils import count_tokens
|
13 |
-
# from tts_model import TTSModel
|
14 |
-
|
15 |
-
# # Set HF_HOME for faster restarts with cached models/voices
|
16 |
-
# os.environ["HF_HOME"] = "/data/.huggingface"
|
17 |
-
|
18 |
-
# # Create TTS model instance
|
19 |
-
# model = TTSModel()
|
20 |
-
|
21 |
-
# # Configure logging
|
22 |
-
# logging.basicConfig(level=logging.DEBUG)
|
23 |
-
# # Suppress matplotlib debug messages
|
24 |
-
# logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
25 |
-
# logger = logging.getLogger(__name__)
|
26 |
-
# logger.debug("Starting app initialization...")
|
27 |
-
|
28 |
-
|
29 |
-
# model = TTSModel()
|
30 |
-
|
31 |
-
# def initialize_model():
|
32 |
-
# """Initialize model and get voices"""
|
33 |
-
# if model.model is None:
|
34 |
-
# if not model.initialize():
|
35 |
-
# raise gr.Error("Failed to initialize model")
|
36 |
-
|
37 |
-
# voices = model.list_voices()
|
38 |
-
# if not voices:
|
39 |
-
# raise gr.Error("No voices found. Please check the voices directory.")
|
40 |
-
|
41 |
-
# default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None
|
42 |
-
|
43 |
-
# return gr.update(choices=voices, value=default_voice)
|
44 |
-
|
45 |
-
# def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress):
|
46 |
-
# # Calculate time metrics
|
47 |
-
# elapsed = time.time() - start_time
|
48 |
-
# gpu_time_left = max(0, gpu_timeout - elapsed)
|
49 |
-
|
50 |
-
# # Calculate chunk time more accurately
|
51 |
-
# prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0
|
52 |
-
# chunk_time = elapsed - prev_total_time
|
53 |
-
|
54 |
-
# # Validate metrics before adding to state
|
55 |
-
# if chunk_time > 0 and tokens_per_sec >= 0:
|
56 |
-
# # Update progress state with validated metrics
|
57 |
-
# progress_state["progress"] = chunk_num / total_chunks
|
58 |
-
# progress_state["total_chunks"] = total_chunks
|
59 |
-
# progress_state["gpu_time_left"] = gpu_time_left
|
60 |
-
# progress_state["tokens_per_sec"].append(float(tokens_per_sec))
|
61 |
-
# progress_state["rtf"].append(float(rtf))
|
62 |
-
# progress_state["chunk_times"].append(chunk_time)
|
63 |
-
|
64 |
-
# # Only update progress display during processing
|
65 |
-
# progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s")
|
66 |
-
|
67 |
-
# def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)):
|
68 |
-
# """Handle text-to-speech generation from the Gradio UI"""
|
69 |
-
# try:
|
70 |
-
# if not text or not voice_names:
|
71 |
-
# raise gr.Error("Please enter text and select at least one voice")
|
72 |
-
|
73 |
-
# start_time = time.time()
|
74 |
-
|
75 |
-
# # Create progress state with explicit type initialization
|
76 |
-
# progress_state = {
|
77 |
-
# "progress": 0.0,
|
78 |
-
# "tokens_per_sec": [], # Initialize as empty list
|
79 |
-
# "rtf": [], # Initialize as empty list
|
80 |
-
# "chunk_times": [], # Initialize as empty list
|
81 |
-
# "gpu_time_left": float(gpu_timeout), # Ensure float
|
82 |
-
# "total_chunks": 0
|
83 |
-
# }
|
84 |
-
|
85 |
-
# # Handle single or multiple voices
|
86 |
-
# if isinstance(voice_names, str):
|
87 |
-
# voice_names = [voice_names]
|
88 |
-
|
89 |
-
# # Generate speech with progress tracking using combined voice
|
90 |
-
# audio_array, duration, metrics = model.generate_speech(
|
91 |
-
# text,
|
92 |
-
# voice_names,
|
93 |
-
# speed,
|
94 |
-
# gpu_timeout=gpu_timeout,
|
95 |
-
# progress_callback=update_progress,
|
96 |
-
# progress_state=progress_state,
|
97 |
-
# progress=progress
|
98 |
-
# )
|
99 |
-
|
100 |
-
# # Format output for Gradio
|
101 |
-
# audio_output, duration_text = format_audio_output(audio_array)
|
102 |
-
|
103 |
-
# # Create plot and metrics text outside GPU context
|
104 |
-
# fig, metrics_text = create_performance_plot(metrics, voice_names)
|
105 |
-
|
106 |
-
# return (
|
107 |
-
# audio_output,
|
108 |
-
# fig,
|
109 |
-
# metrics_text
|
110 |
-
# )
|
111 |
-
# except Exception as e:
|
112 |
-
# raise gr.Error(f"Generation failed: {str(e)}")
|
113 |
-
|
114 |
-
# def create_performance_plot(metrics, voice_names):
|
115 |
-
# """Create performance plot and metrics text from generation metrics"""
|
116 |
-
# # Clean and process the data
|
117 |
-
# tokens_per_sec = np.array(metrics["tokens_per_sec"])
|
118 |
-
# rtf_values = np.array(metrics["rtf"])
|
119 |
-
|
120 |
-
# # Calculate statistics using cleaned data
|
121 |
-
# median_tps = float(np.median(tokens_per_sec))
|
122 |
-
# mean_tps = float(np.mean(tokens_per_sec))
|
123 |
-
# std_tps = float(np.std(tokens_per_sec))
|
124 |
-
|
125 |
-
# # Set y-axis limits based on data range
|
126 |
-
# y_min = max(0, np.min(tokens_per_sec) * 0.9)
|
127 |
-
# y_max = np.max(tokens_per_sec) * 1.1
|
128 |
-
|
129 |
-
# # Create plot
|
130 |
-
# fig, ax = plt.subplots(figsize=(10, 5))
|
131 |
-
# fig.patch.set_facecolor('black')
|
132 |
-
# ax.set_facecolor('black')
|
133 |
-
|
134 |
-
# # Plot data points
|
135 |
-
# chunk_nums = list(range(1, len(tokens_per_sec) + 1))
|
136 |
-
|
137 |
-
# # Plot data points
|
138 |
-
# ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6)
|
139 |
-
|
140 |
-
# # Set y-axis limits with padding
|
141 |
-
# padding = 0.1 * (y_max - y_min)
|
142 |
-
# ax.set_ylim(max(0, y_min - padding), y_max + padding)
|
143 |
-
|
144 |
-
# # Add median line
|
145 |
-
# ax.axhline(y=median_tps, color='#05d9e8', linestyle='--',
|
146 |
-
# label=f'Median: {median_tps:.1f} tokens/sec')
|
147 |
-
|
148 |
-
# # Style improvements
|
149 |
-
# ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white')
|
150 |
-
# ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white')
|
151 |
-
# ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white')
|
152 |
-
# ax.tick_params(axis='both', which='major', labelsize=20, colors='white')
|
153 |
-
# ax.spines['bottom'].set_color('white')
|
154 |
-
# ax.spines['top'].set_color('white')
|
155 |
-
# ax.spines['left'].set_color('white')
|
156 |
-
# ax.spines['right'].set_color('white')
|
157 |
-
# ax.grid(False)
|
158 |
-
# ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left',
|
159 |
-
# labelcolor='white')
|
160 |
-
|
161 |
-
# plt.tight_layout()
|
162 |
-
|
163 |
-
# # Calculate average RTF from individual chunk RTFs
|
164 |
-
# rtf = np.mean(rtf_values)
|
165 |
-
|
166 |
-
# # Prepare metrics text
|
167 |
-
# metrics_text = (
|
168 |
-
# f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" +
|
169 |
-
# f"Real-time Factor: {rtf:.3f}\n" +
|
170 |
-
# f"Real Time Speed: {int(1/rtf)}x\n" +
|
171 |
-
# f"Processing Time: {int(metrics['total_time'])}s\n" +
|
172 |
-
# f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" +
|
173 |
-
# f"Voices: {', '.join(voice_names)}"
|
174 |
-
# )
|
175 |
-
|
176 |
-
# return fig, metrics_text
|
177 |
-
|
178 |
-
|
179 |
-
# # Create Gradio interface
|
180 |
-
# with gr.Blocks(title="Kokoro TTS Demo", css="""
|
181 |
-
# .equal-height {
|
182 |
-
# min-height: 400px;
|
183 |
-
# display: flex;
|
184 |
-
# flex-direction: column;
|
185 |
-
# }
|
186 |
-
# .token-label {
|
187 |
-
# font-size: 1rem;
|
188 |
-
# margin-bottom: 0.3rem;
|
189 |
-
# text-align: center;
|
190 |
-
# padding: 0.2rem 0;
|
191 |
-
# }
|
192 |
-
# .token-count {
|
193 |
-
# color: #4169e1;
|
194 |
-
# }
|
195 |
-
# """) as demo:
|
196 |
-
# gr.HTML(header_html)
|
197 |
-
|
198 |
-
# with gr.Row():
|
199 |
-
# # Column 1: Text Input and Book Selection
|
200 |
-
# with gr.Column(elem_classes="equal-height"):
|
201 |
-
# # Book selection
|
202 |
-
# books = get_available_books()
|
203 |
-
# book_dropdown = gr.Dropdown(
|
204 |
-
# label="Select Book",
|
205 |
-
# choices=[book['label'] for book in books],
|
206 |
-
# value=books[0]['label'] if books else None,
|
207 |
-
# type="value",
|
208 |
-
# allow_custom_value=True
|
209 |
-
# )
|
210 |
-
|
211 |
-
# # Initialize chapters for first book
|
212 |
-
# initial_book = books[0]['value'] if books else None
|
213 |
-
# initial_chapters = []
|
214 |
-
# if initial_book:
|
215 |
-
# book_path = os.path.join("texts/processed", initial_book)
|
216 |
-
# _, chapters = get_book_info(book_path)
|
217 |
-
# initial_chapters = [ch['title'] for ch in chapters]
|
218 |
-
|
219 |
-
# # Chapter selection with initial chapters
|
220 |
-
# chapter_dropdown = gr.Dropdown(
|
221 |
-
# label="Select Chapter",
|
222 |
-
# choices=initial_chapters,
|
223 |
-
# value=initial_chapters[0] if initial_chapters else None,
|
224 |
-
# type="value",
|
225 |
-
# allow_custom_value=True
|
226 |
-
# )
|
227 |
-
# lab_tps = 175
|
228 |
-
# lab_rts = 50
|
229 |
-
# # Text input area with initial chapter text
|
230 |
-
# initial_text = ""
|
231 |
-
# if initial_chapters and initial_book:
|
232 |
-
# book_path = os.path.join("texts/processed", initial_book)
|
233 |
-
# _, chapters = get_book_info(book_path)
|
234 |
-
# if chapters:
|
235 |
-
# initial_text = get_chapter_text(book_path, chapters[0]['id'])
|
236 |
-
# tokens = count_tokens(initial_text)
|
237 |
-
# time_estimate = math.ceil(tokens / lab_tps)
|
238 |
-
# output_estimate = (time_estimate * lab_rts)//60
|
239 |
-
# initial_label = f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'
|
240 |
-
# else:
|
241 |
-
# initial_label = '<div class="token-label"></div>'
|
242 |
-
# else:
|
243 |
-
# initial_label = '<div class="token-label"></div>'
|
244 |
-
|
245 |
-
# def update_text_label(text):
|
246 |
-
# if not text:
|
247 |
-
# return '<div class="token-label"></div>'
|
248 |
-
# tokens = count_tokens(text)
|
249 |
-
# time_estimate = math.ceil(tokens / lab_tps)
|
250 |
-
# output_estimate = (time_estimate * lab_rts)//60
|
251 |
-
# return f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'
|
252 |
-
|
253 |
-
|
254 |
-
# text_input = gr.TextArea(
|
255 |
-
# label=None,
|
256 |
-
# placeholder="Enter text here, select a chapter, or upload a .txt file",
|
257 |
-
# value=initial_text,
|
258 |
-
# lines=8,
|
259 |
-
# max_lines=14,
|
260 |
-
# show_label=False,
|
261 |
-
# show_copy_button=True # Add copy button for convenience
|
262 |
-
# )
|
263 |
-
|
264 |
-
# clear_btn = gr.Button("Clear Text", variant="secondary")
|
265 |
-
# label_html = gr.HTML(initial_label)
|
266 |
-
|
267 |
-
# def clear_text():
|
268 |
-
# return "", '<div class="token-label"></div>'
|
269 |
-
|
270 |
-
# clear_btn.click(
|
271 |
-
# fn=clear_text,
|
272 |
-
# outputs=[text_input, label_html]
|
273 |
-
# )
|
274 |
-
|
275 |
-
# # Update label whenever text changes
|
276 |
-
# text_input.change(
|
277 |
-
# fn=update_text_label,
|
278 |
-
# inputs=[text_input],
|
279 |
-
# outputs=[label_html],
|
280 |
-
# trigger_mode="always_last"
|
281 |
-
# )
|
282 |
-
|
283 |
-
# def update_chapters(book_name):
|
284 |
-
# if not book_name:
|
285 |
-
# return gr.update(choices=[], value=None), "", '<div class="token-label"></div>'
|
286 |
-
# # Find the corresponding book file
|
287 |
-
# book_file = next((book['value'] for book in books if book['label'] == book_name), None)
|
288 |
-
# if not book_file:
|
289 |
-
# return gr.update(choices=[], value=None), "", '<div class="token-label"></div>'
|
290 |
-
# book_path = os.path.join("texts/processed", book_file)
|
291 |
-
# book_title, chapters = get_book_info(book_path)
|
292 |
-
# # Create simple choices list of chapter titles
|
293 |
-
# chapter_choices = [ch['title'] for ch in chapters]
|
294 |
-
# # Set initial chapter text when book is selected
|
295 |
-
# initial_text = get_chapter_text(book_path, chapters[0]['id']) if chapters else ""
|
296 |
-
# if initial_text:
|
297 |
-
# tokens = count_tokens(initial_text)
|
298 |
-
# time_estimate = math.ceil(tokens / 150 / 10) * 10
|
299 |
-
# label = f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
|
300 |
-
# else:
|
301 |
-
# label = '<div class="token-label"></div>'
|
302 |
-
# return gr.update(choices=chapter_choices, value=chapter_choices[0] if chapter_choices else None), initial_text, label
|
303 |
-
|
304 |
-
# def load_chapter_text(book_name, chapter_title):
|
305 |
-
# if not book_name or not chapter_title:
|
306 |
-
# return "", '<div class="token-label"></div>'
|
307 |
-
# # Find the corresponding book file
|
308 |
-
# book_file = next((book['value'] for book in books if book['label'] == book_name), None)
|
309 |
-
# if not book_file:
|
310 |
-
# return "", '<div class="token-label"></div>'
|
311 |
-
# book_path = os.path.join("texts/processed", book_file)
|
312 |
-
# # Get all chapters and find the one matching the title
|
313 |
-
# _, chapters = get_book_info(book_path)
|
314 |
-
# for ch in chapters:
|
315 |
-
# if ch['title'] == chapter_title:
|
316 |
-
# text = get_chapter_text(book_path, ch['id'])
|
317 |
-
# tokens = count_tokens(text)
|
318 |
-
# time_estimate = math.ceil(tokens / 150 / 10) * 10
|
319 |
-
# return text, f'<div class="token-label"> <span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
|
320 |
-
# return "", '<div class="token-label"></div>'
|
321 |
-
|
322 |
-
# # Set up event handlers for book/chapter selection
|
323 |
-
# book_dropdown.change(
|
324 |
-
# fn=update_chapters,
|
325 |
-
# inputs=[book_dropdown],
|
326 |
-
# outputs=[chapter_dropdown, text_input, label_html]
|
327 |
-
# )
|
328 |
-
|
329 |
-
# chapter_dropdown.change(
|
330 |
-
# fn=load_chapter_text,
|
331 |
-
# inputs=[book_dropdown, chapter_dropdown],
|
332 |
-
# outputs=[text_input, label_html]
|
333 |
-
# )
|
334 |
-
|
335 |
-
# # Column 2: Controls
|
336 |
-
# with gr.Column(elem_classes="equal-height"):
|
337 |
-
# file_input = gr.File(
|
338 |
-
# label="Upload .txt file",
|
339 |
-
# file_types=[".txt"],
|
340 |
-
# type="binary"
|
341 |
-
# )
|
342 |
-
|
343 |
-
# def load_text_from_file(file_bytes):
|
344 |
-
# if file_bytes is None:
|
345 |
-
# return None, '<div class="token-label"></div>'
|
346 |
-
# try:
|
347 |
-
# text = file_bytes.decode('utf-8')
|
348 |
-
# tokens = count_tokens(text)
|
349 |
-
# time_estimate = math.ceil(tokens / 150 / 10) * 10 # Round up to nearest 10 seconds
|
350 |
-
# return text, f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
|
351 |
-
# except Exception as e:
|
352 |
-
# raise gr.Error(f"Failed to read file: {str(e)}")
|
353 |
-
|
354 |
-
# file_input.change(
|
355 |
-
# fn=load_text_from_file,
|
356 |
-
# inputs=[file_input],
|
357 |
-
# outputs=[text_input, label_html]
|
358 |
-
# )
|
359 |
-
|
360 |
-
# with gr.Group():
|
361 |
-
# voice_dropdown = gr.Dropdown(
|
362 |
-
# label="Voice(s)",
|
363 |
-
# choices=[], # Start empty, will be populated after initialization
|
364 |
-
# value=None,
|
365 |
-
# allow_custom_value=True,
|
366 |
-
# multiselect=True
|
367 |
-
# )
|
368 |
-
|
369 |
-
# # Add refresh button to manually update voice list
|
370 |
-
# refresh_btn = gr.Button("🔄 Refresh Voices", size="sm")
|
371 |
-
|
372 |
-
# speed_slider = gr.Slider(
|
373 |
-
# label="Speed",
|
374 |
-
# minimum=0.5,
|
375 |
-
# maximum=2.0,
|
376 |
-
# value=1.0,
|
377 |
-
# step=0.1
|
378 |
-
# )
|
379 |
-
# gpu_timeout_slider = gr.Slider(
|
380 |
-
# label="GPU Timeout (seconds)",
|
381 |
-
# minimum=15,
|
382 |
-
# maximum=120,
|
383 |
-
# value=90,
|
384 |
-
# step=1,
|
385 |
-
# info="Maximum time allowed for GPU processing"
|
386 |
-
# )
|
387 |
-
# submit_btn = gr.Button("Generate Speech", variant="primary")
|
388 |
-
|
389 |
-
# # Column 3: Output
|
390 |
-
# with gr.Column(elem_classes="equal-height"):
|
391 |
-
# audio_output = gr.Audio(
|
392 |
-
# label="Generated Speech",
|
393 |
-
# type="numpy",
|
394 |
-
# format="wav",
|
395 |
-
# autoplay=False
|
396 |
-
# )
|
397 |
-
# progress_bar = gr.Progress(track_tqdm=False)
|
398 |
-
# metrics_text = gr.Textbox(
|
399 |
-
# label="Performance Summary",
|
400 |
-
# interactive=False,
|
401 |
-
# lines=5
|
402 |
-
# )
|
403 |
-
# metrics_plot = gr.Plot(
|
404 |
-
# label="Processing Metrics",
|
405 |
-
# show_label=True,
|
406 |
-
# format="png" # Explicitly set format to PNG which is supported by matplotlib
|
407 |
-
# )
|
408 |
-
|
409 |
-
# # Set up event handlers
|
410 |
-
# refresh_btn.click(
|
411 |
-
# fn=initialize_model,
|
412 |
-
# outputs=[voice_dropdown]
|
413 |
-
# )
|
414 |
-
|
415 |
-
# submit_btn.click(
|
416 |
-
# fn=generate_speech_from_ui,
|
417 |
-
# inputs=[text_input, voice_dropdown, speed_slider, gpu_timeout_slider],
|
418 |
-
# outputs=[audio_output, metrics_plot, metrics_text],
|
419 |
-
# show_progress=True
|
420 |
-
# )
|
421 |
-
|
422 |
-
# # Add text analysis info
|
423 |
-
# with gr.Row():
|
424 |
-
# with gr.Column():
|
425 |
-
# gr.Markdown(demo_text_info)
|
426 |
-
|
427 |
-
# # Initialize voices on load
|
428 |
-
# demo.load(
|
429 |
-
# fn=initialize_model,
|
430 |
-
# outputs=[voice_dropdown]
|
431 |
-
# )
|
432 |
-
|
433 |
-
# # Launch the app
|
434 |
-
# if __name__ == "__main__":
|
435 |
-
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tts_model.py
CHANGED
@@ -28,9 +28,9 @@ class TTSModel:
|
|
28 |
ensure_dir(self.voices_dir)
|
29 |
self.model_path = None
|
30 |
|
31 |
-
# Load required modules
|
32 |
py_modules = ["istftnet", "plbert", "models", "kokoro"]
|
33 |
-
module_files = download_model_files(self.model_repo, [f"{m}.py" for m in py_modules])
|
34 |
|
35 |
for module_name, file_path in zip(py_modules, module_files):
|
36 |
load_module_from_file(module_name, file_path)
|
@@ -48,7 +48,7 @@ class TTSModel:
|
|
48 |
# Download model files
|
49 |
model_files = download_model_files(
|
50 |
self.model_repo,
|
51 |
-
["kokoro-v0_19.pth", "config.json"]
|
52 |
)
|
53 |
self.model_path = model_files[0] # kokoro-v0_19.pth
|
54 |
|
|
|
28 |
ensure_dir(self.voices_dir)
|
29 |
self.model_path = None
|
30 |
|
31 |
+
# Load required modules from v0.19 directory
|
32 |
py_modules = ["istftnet", "plbert", "models", "kokoro"]
|
33 |
+
module_files = download_model_files(self.model_repo, [f"v0.19/{m}.py" for m in py_modules])
|
34 |
|
35 |
for module_name, file_path in zip(py_modules, module_files):
|
36 |
load_module_from_file(module_name, file_path)
|
|
|
48 |
# Download model files
|
49 |
model_files = download_model_files(
|
50 |
self.model_repo,
|
51 |
+
["v0.19/kokoro-v0_19.pth", "v0.19/config.json"]
|
52 |
)
|
53 |
self.model_path = model_files[0] # kokoro-v0_19.pth
|
54 |
|