Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,814 Bytes
4289090 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import json
import re
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
import warnings
import spaces
flash_attn_installed = False
try:
import subprocess
print("Installing flash-attn...")
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
flash_attn_installed = True
except Exception as e:
print(f"Error installing flash-attn: {e}")
# Suppress specific warnings
warnings.filterwarnings(
"ignore",
message="You have modified the pretrained model configuration to control generation.",
)
warnings.filterwarnings(
"ignore",
message="You are not running the flash-attention implementation, expect numerical differences.",
)
print("Initializing application...")
model = AutoModelForCausalLM.from_pretrained(
"sciphi/triplex",
trust_remote_code=True,
attn_implementation="flash_attention_2" if flash_attn_installed else None,
torch_dtype=torch.bfloat16,
device_map="auto",
low_cpu_mem_usage=True,#advised if any device map given
).eval()
tokenizer = AutoTokenizer.from_pretrained(
"sciphi/triplex",
trust_remote_code=True,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
)
print("Model and tokenizer loaded successfully.")
# Set up generation config
generation_config = GenerationConfig.from_pretrained("sciphi/triplex")
generation_config.max_length = 2048
generation_config.pad_token_id = tokenizer.eos_token_id
@spaces.GPU
def triplextract(text, entity_types, predicates):
input_format = """Perform Named Entity Recognition (NER) and extract knowledge graph triplets from the text. NER identifies named entities of given entity types, and triple extraction identifies relationships between entities using specified predicates. Return the result as a JSON object with an "entities_and_triples" key containing an array of entities and triples.
**Entity Types:**
{entity_types}
**Predicates:**
{predicates}
**Text:**
{text}
"""
message = input_format.format(
entity_types = json.dumps({"entity_types": entity_types}),
predicates = json.dumps({"predicates": predicates}),
text = text)
# message = input_format.format(
# entity_types=entity_types, predicates=predicates, text=text
# )
messages = [{"role": "user", "content": message}]
print("Tokenizing input...")
input_ids = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)
attention_mask = input_ids.ne(tokenizer.pad_token_id)
print("Generating output...")
try:
with torch.no_grad():
output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=generation_config,
do_sample=True,
)
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
print("Decoding output completed.")
return decoded_output
except torch.cuda.OutOfMemoryError as e:
print(f"CUDA out of memory error: {e}")
return "Error: CUDA out of memory."
except Exception as e:
print(f"Error in generation: {e}")
return f"Error in generation: {str(e)}"
def parse_triples(prediction):
entities = {}
relationships = []
try:
data = json.loads(prediction)
items = data.get("entities_and_triples", [])
except json.JSONDecodeError:
json_match = re.search(r"```json\s*(.*?)\s*```", prediction, re.DOTALL)
if json_match:
try:
data = json.loads(json_match.group(1))
items = data.get("entities_and_triples", [])
except json.JSONDecodeError:
items = re.findall(r"\[(.*?)\]", prediction)
else:
items = re.findall(r"\[(.*?)\]", prediction)
for item in items:
if isinstance(item, str):
if ":" in item:
id, entity = item.split(",", 1)
id = id.strip("[]").strip()
entity_type, entity_value = entity.split(":", 1)
entities[id] = {
"type": entity_type.strip(),
"value": entity_value.strip(),
}
else:
parts = item.split()
if len(parts) >= 3:
source = parts[0].strip("[]")
relation = " ".join(parts[1:-1])
target = parts[-1].strip("[]")
relationships.append((source, relation.strip(), target))
return entities, relationships |