Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,075 Bytes
4289090 b26b502 4289090 b26b502 4289090 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import random
import gradio as gr
import spaces
from lib.graph_extract import triplextract, parse_triples
from lib.visualize import create_bokeh_plot #, create_plotly_plot
from lib.samples import snippets
WORD_LIMIT = 300
def process_text(text, entity_types, predicates):
if not text:
return None, "Please enter some text."
words = text.split()
if len(words) > WORD_LIMIT:
return None, f"Please limit your input to {WORD_LIMIT} words. Current word count: {len(words)}"
entity_types = [et.strip() for et in entity_types.split(",") if et.strip()]
predicates = [p.strip() for p in predicates.split(",") if p.strip()]
if not entity_types:
return None, "Please enter at least one entity type."
if not predicates:
return None, "Please enter at least one predicate."
try:
prediction = triplextract(text, entity_types, predicates)
if prediction.startswith("Error"):
return None, prediction
entities, relationships = parse_triples(prediction)
if not entities and not relationships:
return (
None,
"No entities or relationships found. Try different text or check your input.",
)
fig = create_bokeh_plot(entities, relationships)
return (
fig,
f"Entities: {entities}\nRelationships: {relationships}\n\nRaw output:\n{prediction}",
)
except Exception as e:
print(f"Error in process_text: {e}")
return None, f"An error occurred: {str(e)}"
def update_inputs(sample_name):
sample = snippets[sample_name]
return sample.text_input, sample.entity_types, sample.predicates
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
gr.Markdown("# Knowledge Graph Extractor")
default_sample_name = random.choice(list(snippets.keys()))
default_sample = snippets[default_sample_name]
with gr.Row():
with gr.Column(scale=1):
sample_dropdown = gr.Dropdown(
choices=list(snippets.keys()),
label="Select Sample",
value=default_sample_name
)
input_text = gr.Textbox(
label="Input Text",
lines=5,
value=default_sample.text_input
)
entity_types = gr.Textbox(label="Entity Types", value=default_sample.entity_types)
predicates = gr.Textbox(label="Predicates", value=default_sample.predicates)
submit_btn = gr.Button("Extract Knowledge Graph")
with gr.Column(scale=2):
output_graph = gr.Plot(label="Knowledge Graph")
error_message = gr.Textbox(label="Textual Output")
sample_dropdown.change(
update_inputs,
inputs=[sample_dropdown],
outputs=[input_text, entity_types, predicates]
)
submit_btn.click(
process_text,
inputs=[input_text, entity_types, predicates],
outputs=[output_graph, error_message],
)
if __name__ == "__main__":
demo.launch() |