Spaces:
Running
on
Zero
Running
on
Zero
import plotly.graph_objects as go | |
import networkx as nx | |
import numpy as np | |
from bokeh.models import (BoxSelectTool, HoverTool, MultiLine, NodesAndLinkedEdges, | |
Plot, Range1d, Scatter, TapTool, LabelSet, ColumnDataSource) | |
from bokeh.palettes import Spectral4 | |
from bokeh.plotting import from_networkx | |
def create_graph(entities, relationships): | |
G = nx.Graph() | |
for entity_id, entity_data in entities.items(): | |
G.add_node(entity_id, label=f"{entity_data.get('value', 'Unknown')} ({entity_data.get('type', 'Unknown')})") | |
for source, relation, target in relationships: | |
G.add_edge(source, target, label=relation) | |
return G | |
def improved_spectral_layout(G, scale=1): | |
pos = nx.spectral_layout(G) | |
# Add some random noise to prevent overlapping | |
pos = {node: (x + np.random.normal(0, 0.1), y + np.random.normal(0, 0.1)) for node, (x, y) in pos.items()} | |
# Scale the layout | |
pos = {node: (x * scale, y * scale) for node, (x, y) in pos.items()} | |
return pos | |
def create_bokeh_plot(G, layout_type='spring'): | |
plot = Plot(width=600, height=600, | |
x_range=Range1d(-1.2, 1.2), y_range=Range1d(-1.2, 1.2)) | |
plot.title.text = "Knowledge Graph Interaction" | |
node_hover = HoverTool(tooltips=[("Entity", "@label")]) | |
edge_hover = HoverTool(tooltips=[("Relation", "@label")]) | |
plot.add_tools(node_hover, edge_hover, TapTool(), BoxSelectTool()) | |
# Create layout based on layout_type | |
if layout_type == 'spring': | |
pos = nx.spring_layout(G, k=0.5, iterations=50) | |
elif layout_type == 'fruchterman_reingold': | |
pos = nx.fruchterman_reingold_layout(G, k=0.5, iterations=50) | |
elif layout_type == 'circular': | |
pos = nx.circular_layout(G) | |
elif layout_type == 'random': | |
pos = nx.random_layout(G) | |
elif layout_type == 'spectral': | |
pos = improved_spectral_layout(G) | |
elif layout_type == 'shell': | |
pos = nx.shell_layout(G) | |
else: | |
pos = nx.spring_layout(G, k=0.5, iterations=50) | |
graph_renderer = from_networkx(G, pos, scale=1, center=(0, 0)) | |
graph_renderer.node_renderer.glyph = Scatter(size=15, fill_color=Spectral4[0]) | |
graph_renderer.node_renderer.selection_glyph = Scatter(size=15, fill_color=Spectral4[2]) | |
graph_renderer.node_renderer.hover_glyph = Scatter(size=15, fill_color=Spectral4[1]) | |
graph_renderer.edge_renderer.glyph = MultiLine(line_color="#000", line_alpha=0.9, line_width=3) | |
graph_renderer.edge_renderer.selection_glyph = MultiLine(line_color=Spectral4[2], line_width=4) | |
graph_renderer.edge_renderer.hover_glyph = MultiLine(line_color=Spectral4[1], line_width=3) | |
graph_renderer.selection_policy = NodesAndLinkedEdges() | |
graph_renderer.inspection_policy = NodesAndLinkedEdges() | |
plot.renderers.append(graph_renderer) | |
# Add node labels | |
x, y = zip(*graph_renderer.layout_provider.graph_layout.values()) | |
node_labels = nx.get_node_attributes(G, 'label') | |
source = ColumnDataSource({'x': x, 'y': y, 'label': [node_labels[node] for node in G.nodes()]}) | |
labels = LabelSet(x='x', y='y', text='label', source=source, background_fill_color='white', | |
text_font_size='8pt', background_fill_alpha=0.7) | |
plot.renderers.append(labels) | |
# Add edge labels | |
edge_x, edge_y, edge_labels = [], [], [] | |
for (start_node, end_node, label) in G.edges(data='label'): | |
start_x, start_y = graph_renderer.layout_provider.graph_layout[start_node] | |
end_x, end_y = graph_renderer.layout_provider.graph_layout[end_node] | |
edge_x.append((start_x + end_x) / 2) | |
edge_y.append((start_y + end_y) / 2) | |
edge_labels.append(label) | |
edge_label_source = ColumnDataSource({'x': edge_x, 'y': edge_y, 'label': edge_labels}) | |
edge_labels = LabelSet(x='x', y='y', text='label', source=edge_label_source, | |
background_fill_color='white', text_font_size='8pt', | |
background_fill_alpha=0.7) | |
plot.renderers.append(edge_labels) | |
return plot | |
def create_plotly_plot(G, layout_type='spring'): | |
# Create layout based on layout_type | |
if layout_type == 'spring': | |
pos = nx.spring_layout(G, k=0.5, iterations=50) | |
elif layout_type == 'fruchterman_reingold': | |
pos = nx.fruchterman_reingold_layout(G, k=0.5, iterations=50) | |
elif layout_type == 'circular': | |
pos = nx.circular_layout(G) | |
elif layout_type == 'random': | |
pos = nx.random_layout(G) | |
elif layout_type == 'spectral': | |
pos = improved_spectral_layout(G) | |
elif layout_type == 'shell': | |
pos = nx.shell_layout(G) | |
else: | |
pos = nx.spring_layout(G, k=0.5, iterations=50) | |
edge_trace = go.Scatter(x=[], y=[], line=dict(width=1, color="#888"), hoverinfo="text", mode="lines", text=[]) | |
node_trace = go.Scatter(x=[], y=[], mode="markers+text", hoverinfo="text", | |
marker=dict(showscale=True, colorscale="Viridis", reversescale=True, color=[], size=15, | |
colorbar=dict(thickness=15, title="Node Connections", xanchor="left", titleside="right"), | |
line_width=2), | |
text=[], textposition="top center") | |
edge_labels = [] | |
for edge in G.edges(): | |
x0, y0 = pos[edge[0]] | |
x1, y1 = pos[edge[1]] | |
edge_trace["x"] += (x0, x1, None) | |
edge_trace["y"] += (y0, y1, None) | |
mid_x, mid_y = (x0 + x1) / 2, (y0 + y1) / 2 | |
edge_labels.append(go.Scatter(x=[mid_x], y=[mid_y], mode="text", text=[G.edges[edge]["label"]], | |
textposition="middle center", hoverinfo="none", showlegend=False, textfont=dict(size=8))) | |
for node in G.nodes(): | |
x, y = pos[node] | |
node_trace["x"] += (x,) | |
node_trace["y"] += (y,) | |
node_trace["text"] += (G.nodes[node]["label"],) | |
node_trace["marker"]["color"] += (len(list(G.neighbors(node))),) | |
fig = go.Figure(data=[edge_trace, node_trace] + edge_labels, | |
layout=go.Layout(title="Knowledge Graph", titlefont_size=16, showlegend=False, hovermode="closest", | |
margin=dict(b=20, l=5, r=5, t=40), annotations=[], | |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
width=800, height=600)) | |
fig.update_layout(newshape=dict(line_color="#009900"), | |
xaxis=dict(scaleanchor="y", scaleratio=1), | |
yaxis=dict(scaleanchor="x", scaleratio=1)) | |
return fig |