import random import gradio as gr import spaces from lib.graph_extract import triplextract, parse_triples from lib.visualize import create_bokeh_plot #, create_plotly_plot from lib.samples import snippets WORD_LIMIT = 300 def process_text(text, entity_types, predicates): if not text: return None, "Please enter some text." words = text.split() if len(words) > WORD_LIMIT: return None, f"Please limit your input to {WORD_LIMIT} words. Current word count: {len(words)}" entity_types = [et.strip() for et in entity_types.split(",") if et.strip()] predicates = [p.strip() for p in predicates.split(",") if p.strip()] if not entity_types: return None, "Please enter at least one entity type." if not predicates: return None, "Please enter at least one predicate." try: prediction = triplextract(text, entity_types, predicates) if prediction.startswith("Error"): return None, prediction entities, relationships = parse_triples(prediction) if not entities and not relationships: return ( None, "No entities or relationships found. Try different text or check your input.", ) fig = create_bokeh_plot(entities, relationships) return ( fig, f"Entities: {entities}\nRelationships: {relationships}\n\nRaw output:\n{prediction}", ) except Exception as e: print(f"Error in process_text: {e}") return None, f"An error occurred: {str(e)}" def update_inputs(sample_name): sample = snippets[sample_name] return sample.text_input, sample.entity_types, sample.predicates with gr.Blocks(theme=gr.themes.Monochrome()) as demo: gr.Markdown("# Knowledge Graph Extractor") default_sample_name = random.choice(list(snippets.keys())) default_sample = snippets[default_sample_name] with gr.Row(): with gr.Column(scale=1): sample_dropdown = gr.Dropdown( choices=list(snippets.keys()), label="Select Sample", value=default_sample_name ) input_text = gr.Textbox( label="Input Text", lines=5, value=default_sample.text_input ) entity_types = gr.Textbox(label="Entity Types", value=default_sample.entity_types) predicates = gr.Textbox(label="Predicates", value=default_sample.predicates) submit_btn = gr.Button("Extract Knowledge Graph") with gr.Column(scale=2): output_graph = gr.Plot(label="Knowledge Graph") error_message = gr.Textbox(label="Textual Output") sample_dropdown.change( update_inputs, inputs=[sample_dropdown], outputs=[input_text, entity_types, predicates] ) submit_btn.click( process_text, inputs=[input_text, entity_types, predicates], outputs=[output_graph, error_message], ) if __name__ == "__main__": demo.launch()