from typing import Optional from cog import BasePredictor, Input, Path, BaseModel class ModelOutput(BaseModel): prompt_npz: Optional[Path] audio_out: Path class Predictor(BasePredictor): def setup(self): """Load the model into memory to make running multiple predictions efficient""" def predict( self, speaker: Path = Input( description="Reference audio.", default=None), ) -> ModelOutput: """Run a single prediction on the model""" # SETUP large_quant_model = False # Use the larger pretrained model device = 'cuda' # 'cuda', 'cpu', 'cuda:0', 0, -1, torch.device('cuda') import numpy as np import torch import torchaudio from encodec import EncodecModel from encodec.utils import convert_audio from bark_hubert_quantizer.hubert_manager import HuBERTManager from bark_hubert_quantizer.pre_kmeans_hubert import CustomHubert from bark_hubert_quantizer.customtokenizer import CustomTokenizer model = ('quantifier_V1_hubert_base_ls960_23.pth', 'tokenizer_large.pth') if large_quant_model else ( 'quantifier_hubert_base_ls960_14.pth', 'tokenizer.pth') print('Loading HuBERT...') hubert_model = CustomHubert( HuBERTManager.make_sure_hubert_installed(), device=device) print('Loading Quantizer...') quant_model = CustomTokenizer.load_from_checkpoint( HuBERTManager.make_sure_tokenizer_installed(model=model[0], local_file=model[1]), device) print('Loading Encodec...') encodec_model = EncodecModel.encodec_model_24khz() encodec_model.set_target_bandwidth(6.0) encodec_model.to(device) print('Downloaded and loaded models!') # PREDICT # Put the path of the speaker you want to use here. wav_file = speaker # Put the path to save the cloned speaker to here. out_file = 'speaker.npz' wav, sr = torchaudio.load(wav_file) wav_hubert = wav.to(device) if wav_hubert.shape[0] == 2: # Stereo to mono if needed wav_hubert = wav_hubert.mean(0, keepdim=True) print('Extracting semantics...') semantic_vectors = hubert_model.forward(wav_hubert, input_sample_hz=sr) print('Tokenizing semantics...') semantic_tokens = quant_model.get_token(semantic_vectors) print('Creating coarse and fine prompts...') wav = convert_audio(wav, sr, encodec_model.sample_rate, 1).unsqueeze(0) wav = wav.to(device) with torch.no_grad(): encoded_frames = encodec_model.encode(wav) codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() codes = codes.cpu() semantic_tokens = semantic_tokens.cpu() np.savez(out_file, semantic_prompt=semantic_tokens, fine_prompt=codes, coarse_prompt=codes[:2, :] ) print('Done!') return ModelOutput(audio_out=Path('speaker.npz'))