Chatterbox / app.py
ollieollie's picture
MCP-compatible (#12)
dd21b03 verified
raw
history blame
5.27 kB
import random
import numpy as np
import torch
from chatterbox.src.chatterbox.tts import ChatterboxTTS
import gradio as gr
import spaces
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"🚀 Running on device: {DEVICE}")
# --- Global Model Initialization ---
MODEL = None
def get_or_load_model():
"""Loads the ChatterboxTTS model if it hasn't been loaded already,
and ensures it's on the correct device."""
global MODEL
if MODEL is None:
print("Model not loaded, initializing...")
try:
MODEL = ChatterboxTTS.from_pretrained(DEVICE)
if hasattr(MODEL, 'to') and str(MODEL.device) != DEVICE:
MODEL.to(DEVICE)
print(f"Model loaded successfully. Internal device: {getattr(MODEL, 'device', 'N/A')}")
except Exception as e:
print(f"Error loading model: {e}")
raise
return MODEL
# Attempt to load the model at startup.
try:
get_or_load_model()
except Exception as e:
print(f"CRITICAL: Failed to load model on startup. Application may not function. Error: {e}")
def set_seed(seed: int):
"""Sets the random seed for reproducibility across torch, numpy, and random."""
torch.manual_seed(seed)
if DEVICE == "cuda":
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
@spaces.GPU
def generate_tts_audio(
text_input: str,
audio_prompt_path_input: str,
exaggeration_input: float,
temperature_input: float,
seed_num_input: int,
cfgw_input: float
) -> tuple[int, np.ndarray]:
"""
Generate high-quality speech audio from text using ChatterboxTTS model with reference audio styling.
This tool synthesizes natural-sounding speech from input text, using a reference audio file
to capture the speaker's voice characteristics and speaking style. The generated audio
maintains the prosody, tone, and vocal qualities of the reference speaker.
Args:
text_input (str): The text to synthesize into speech (maximum 300 characters)
audio_prompt_path_input (str): File path or URL to the reference audio file that defines the target voice style
exaggeration_input (float): Controls speech expressiveness (0.25-2.0, neutral=0.5, extreme values may be unstable)
temperature_input (float): Controls randomness in generation (0.05-5.0, higher=more varied, default=0.8)
seed_num_input (int): Random seed for reproducible results (0 for random generation)
cfgw_input (float): CFG/Pace weight controlling generation guidance (0.2-1.0, default=0.5)
Returns:
tuple[int, np.ndarray]: A tuple containing the sample rate (int) and the generated audio waveform (numpy.ndarray)
"""
current_model = get_or_load_model()
if current_model is None:
raise RuntimeError("TTS model is not loaded.")
if seed_num_input != 0:
set_seed(int(seed_num_input))
print(f"Generating audio for text: '{text_input[:50]}...'")
wav = current_model.generate(
text_input[:300], # Truncate text to max chars
audio_prompt_path=audio_prompt_path_input,
exaggeration=exaggeration_input,
temperature=temperature_input,
cfg_weight=cfgw_input,
)
print("Audio generation complete.")
return (current_model.sr, wav.squeeze(0).numpy())
with gr.Blocks() as demo:
gr.Markdown(
"""
# Chatterbox TTS Demo
Generate high-quality speech from text with reference audio styling.
"""
)
with gr.Row():
with gr.Column():
text = gr.Textbox(
value="Now let's make my mum's favourite. So three mars bars into the pan. Then we add the tuna and just stir for a bit, just let the chocolate and fish infuse. A sprinkle of olive oil and some tomato ketchup. Now smell that. Oh boy this is going to be incredible.",
label="Text to synthesize (max chars 300)",
max_lines=5
)
ref_wav = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Reference Audio File (Optional)",
value="https://storage.googleapis.com/chatterbox-demo-samples/prompts/female_shadowheart4.flac"
)
exaggeration = gr.Slider(
0.25, 2, step=.05, label="Exaggeration (Neutral = 0.5, extreme values can be unstable)", value=.5
)
cfg_weight = gr.Slider(
0.2, 1, step=.05, label="CFG/Pace", value=0.5
)
with gr.Accordion("More options", open=False):
seed_num = gr.Number(value=0, label="Random seed (0 for random)")
temp = gr.Slider(0.05, 5, step=.05, label="Temperature", value=.8)
run_btn = gr.Button("Generate", variant="primary")
with gr.Column():
audio_output = gr.Audio(label="Output Audio")
run_btn.click(
fn=generate_tts_audio,
inputs=[
text,
ref_wav,
exaggeration,
temp,
seed_num,
cfg_weight,
],
outputs=[audio_output],
)
demo.launch(mcp_server=True)