from dataclasses import dataclass from pathlib import Path import librosa import torch import torch.nn.functional as F from huggingface_hub import hf_hub_download from .models.t3 import T3 from .models.s3tokenizer import S3_SR, drop_invalid_tokens from .models.s3gen import S3GEN_SR, S3Gen from .models.tokenizers import EnTokenizer from .models.voice_encoder import VoiceEncoder from .models.t3.modules.cond_enc import T3Cond REPO_ID = "ResembleAI/Orator" @dataclass class Conditionals: """ Conditionals for T3 and S3Gen - T3 conditionals: - speaker_emb - clap_emb - cond_prompt_speech_tokens - cond_prompt_speech_emb - emotion_adv - S3Gen conditionals: - prompt_token - prompt_token_len - prompt_feat - prompt_feat_len - embedding """ t3: T3Cond gen: dict def to(self, device): self.t3 = self.t3.to(device=device) for k, v in self.gen.items(): if torch.is_tensor(v): self.gen[k] = v.to(device=device) return self def save(self, fpath: Path): arg_dict = dict( t3=self.t3.__dict__, gen=self.gen ) torch.save(arg_dict, fpath) @classmethod def load(cls, fpath, map_location="cpu"): kwargs = torch.load(fpath, map_location=map_location, weights_only=True) return cls(T3Cond(**kwargs['t3']), kwargs['gen']) class OratorTTS: ENC_COND_LEN = 6 * S3_SR DEC_COND_LEN = 10 * S3GEN_SR def __init__( self, t3: T3, s3gen: S3Gen, ve: VoiceEncoder, tokenizer: EnTokenizer, device: str, conds: Conditionals = None, ): self.sr = S3GEN_SR # sample rate of synthesized audio self.t3 = t3 self.s3gen = s3gen self.ve = ve self.tokenizer = tokenizer self.device = device self.conds = conds @classmethod def from_local(cls, ckpt_dir, device) -> 'OratorTTS': ckpt_dir = Path(ckpt_dir) ve = VoiceEncoder() ve.load_state_dict( torch.load(ckpt_dir / "ve.pt") ) ve.to(device).eval() t3 = T3() t3.load_state_dict( torch.load(ckpt_dir / "t3.pt") ) t3.to(device).eval() s3gen = S3Gen() s3gen.load_state_dict( torch.load(ckpt_dir / "s3gen.pt") ) s3gen.to(device).eval() tokenizer = EnTokenizer( str(ckpt_dir / "tokenizer.json") ) conds = None if (builtin_voice := ckpt_dir / "conds.pt").exists(): conds = Conditionals.load(builtin_voice).to(device) return cls(t3, s3gen, ve, tokenizer, device, conds=conds) @classmethod def from_pretrained(cls, device) -> 'OratorTTS': for fpath in ["ve.pt", "t3.pt", "s3gen.pt", "tokenizer.json", "conds.pt"]: local_path = hf_hub_download(repo_id=REPO_ID, filename=fpath) return cls.from_local(Path(local_path).parent, device) def prepare_conditionals(self, wav_fpath, emotion_adv=0.5): ## Load reference wav s3gen_ref_wav, _sr = librosa.load(wav_fpath, sr=S3GEN_SR) s3_ref_wav = librosa.resample(s3gen_ref_wav, orig_sr=S3GEN_SR, target_sr=S3_SR) s3gen_ref_wav = s3gen_ref_wav[:self.DEC_COND_LEN] s3gen_ref_dict = self.s3gen.embed_ref(s3gen_ref_wav, S3GEN_SR, device=self.device) # Speech cond prompt tokens if plen := self.t3.hp.speech_cond_prompt_len: s3_tokzr = self.s3gen.tokenizer t3_cond_prompt_tokens, _ = s3_tokzr.forward([s3_ref_wav[:self.ENC_COND_LEN]], max_len=plen) t3_cond_prompt_tokens = torch.atleast_2d(t3_cond_prompt_tokens).to(self.device) # # Voice-encoder speaker embedding ve_embed = torch.from_numpy(self.ve.embeds_from_wavs([s3_ref_wav], sample_rate=S3_SR)) ve_embed = ve_embed.mean(axis=0, keepdim=True).to(self.device) t3_cond = T3Cond( speaker_emb=ve_embed, cond_prompt_speech_tokens=t3_cond_prompt_tokens, emotion_adv=emotion_adv * torch.ones(1, 1, 1), ).to(device=self.device) self.conds = Conditionals(t3_cond, s3gen_ref_dict) def generate( self, text, audio_prompt_path=None, emotion_adv=0.5 ): if audio_prompt_path: self.prepare_conditionals(audio_prompt_path, emotion_adv=emotion_adv) else: assert self.conds is not None, "Please `prepare_conditionals` first or specify `audio_prompt_path`" # Update emotion_adv if needed if emotion_adv != self.conds.t3.emotion_adv[0, 0, 0]: _cond: T3Cond = self.conds.t3 self.conds.t3 = T3Cond( speaker_emb=_cond.speaker_emb, cond_prompt_speech_tokens=_cond.cond_prompt_speech_tokens, emotion_adv=emotion_adv * torch.ones(1, 1, 1), ).to(device=self.device) text_tokens = self.tokenizer.text_to_tokens(text).to(self.device) sot = self.t3.hp.start_text_token eot = self.t3.hp.stop_text_token text_tokens = F.pad(text_tokens, (1, 0), value=sot) text_tokens = F.pad(text_tokens, (0, 1), value=eot) with torch.inference_mode(): speech_tokens = self.t3.inference( t3_cond=self.conds.t3, text_tokens=text_tokens, max_new_tokens=1000, # TODO: use the value in config ) # TODO: output becomes 1D speech_tokens = drop_invalid_tokens(speech_tokens) speech_tokens = speech_tokens.to(self.device) wav, _ = self.s3gen.inference( speech_tokens=speech_tokens, ref_dict=self.conds.gen, ) return wav.detach().cpu()