Spaces:
Runtime error
Runtime error
File size: 8,720 Bytes
b239c75 436e280 b239c75 436e280 b239c75 436e280 b239c75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import gradio as gr
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer, BlipProcessor, BlipForConditionalGeneration, pipeline
from sentence_transformers import SentenceTransformer, util
import pickle
import numpy as np
from PIL import Image, ImageEnhance
import os
import io
import concurrent.futures
import warnings
warnings.filterwarnings("ignore")
class CLIPModelHandler:
def __init__(self, model_name):
self.model_name = model_name
self.img_names, self.img_emb = self.load_precomputed_embeddings()
def load_precomputed_embeddings(self):
emb_filename = 'unsplash-25k-photos-embeddings.pkl'
with open(emb_filename, 'rb') as fIn:
img_names, img_emb = pickle.load(fIn)
return img_names, img_emb
def search_text(self, query, top_k=1):
model = CLIPModel.from_pretrained(self.model_name)
processor = CLIPProcessor.from_pretrained(self.model_name)
tokenizer = CLIPTokenizer.from_pretrained(self.model_name)
inputs = tokenizer([query], padding=True, return_tensors="pt")
query_emb = model.get_text_features(**inputs)
hits = util.semantic_search(query_emb, self.img_emb, top_k=top_k)[0]
images = [Image.open(os.path.join("photos/", self.img_names[hit['corpus_id']])) for hit in hits]
return images
def search_image(self, image_path, top_k=1):
model = CLIPModel.from_pretrained(self.model_name)
processor = CLIPProcessor.from_pretrained(self.model_name)
# Load and preprocess the image
image = Image.open(image_path)
inputs = processor(images=image, return_tensors="pt")
# Get the image features
outputs = model(**inputs)
image_emb = outputs.logits_per_image
# Perform semantic search
hits = util.semantic_search(image_emb, self.img_emb, top_k=top_k)[0]
# Retrieve and return the relevant images
result_images = []
for hit in hits:
img = Image.open(os.path.join("photos/", self.img_names[hit['corpus_id']]))
result_images.append(img)
return result_images
class BLIPImageCaptioning:
def __init__(self, blip_model_name):
self.blip_model_name = blip_model_name
def preprocess_image(self, image):
if isinstance(image, str):
return Image.open(image).convert('RGB')
elif isinstance(image, np.ndarray):
return Image.fromarray(np.uint8(image)).convert('RGB')
else:
raise ValueError("Invalid input type for image. Supported types: str (file path) or np.ndarray.")
def generate_caption(self, image):
try:
model = BlipForConditionalGeneration.from_pretrained(self.blip_model_name)
processor = BlipProcessor.from_pretrained(self.blip_model_name)
raw_image = self.preprocess_image(image)
inputs = processor(raw_image, return_tensors="pt")
out = model.generate(**inputs)
unconditional_caption = processor.decode(out[0], skip_special_tokens=True)
return unconditional_caption
except Exception as e:
return {"error": str(e)}
def generate_captions_parallel(self, images):
with concurrent.futures.ThreadPoolExecutor() as executor:
results = list(executor.map(self.generate_caption, images))
return results
# Initialize the CLIP model handler
clip_handler = CLIPModelHandler("openai/clip-vit-base-patch32")
# Initialize the zero-shot image classification pipeline
clip_classifier = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32")
# Load BLIP model directly
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model_name = "Salesforce/blip-image-captioning-base"
# Function for text-to-image search
def text_to_image_interface(query, top_k):
try:
# Perform text-to-image search
result_images = clip_handler.search_text(query, top_k)
# Resize images before displaying
result_images_resized = [image.resize((224, 224)) for image in result_images]
# Display more information about the results
result_info = [{"Image Name": os.path.basename(img_path)} for img_path in clip_handler.img_names]
return result_images_resized, result_info
except Exception as e:
return gr.Error(f"Error in text-to-image search: {str(e)}")
# Gradio Interface function for zero-shot classification
def zero_shot_classification(image, labels_text):
try:
# Convert image to PIL format
PIL_image = Image.fromarray(np.uint8(image)).convert('RGB')
# Split labels_text into a list of labels
labels = labels_text.split(",")
# Perform zero-shot classification
res = clip_classifier(images=PIL_image, candidate_labels=labels, hypothesis_template="This is a photo of a {}")
# Format the result as a dictionary
formatted_results = {dic["label"]: dic["score"] for dic in res}
return formatted_results
except Exception as e:
return gr.Error(f"Error in zero-shot classification: {str(e)}")
def preprocessing_interface(original_image, brightness_slider, contrast_slider, saturation_slider, sharpness_slider, rotation_slider):
try:
# Convert NumPy array to PIL Image
PIL_image = Image.fromarray(np.uint8(original_image)).convert('RGB')
# Normalize slider values to be in the range [0, 1]
brightness_normalized = brightness_slider / 100.0
contrast_normalized = contrast_slider / 100.0
saturation_normalized = saturation_slider / 100.0
sharpness_normalized = sharpness_slider / 100.0
# Apply preprocessing based on user input
PIL_image = PIL_image.convert("RGB")
PIL_image = PIL_image.rotate(rotation_slider)
# Adjust brightness
enhancer = ImageEnhance.Brightness(PIL_image)
PIL_image = enhancer.enhance(brightness_normalized)
# Adjust contrast
enhancer = ImageEnhance.Contrast(PIL_image)
PIL_image = enhancer.enhance(contrast_normalized)
# Adjust saturation
enhancer = ImageEnhance.Color(PIL_image)
PIL_image = enhancer.enhance(saturation_normalized)
# Adjust sharpness
enhancer = ImageEnhance.Sharpness(PIL_image)
PIL_image = enhancer.enhance(sharpness_normalized)
# Return the processed image
return PIL_image
except Exception as e:
return gr.Error(f"Error in preprocessing: {str(e)}")
def generate_captions(images):
blip_model = BlipForConditionalGeneration.from_pretrained(blip_model_name)
blip_processor = BlipProcessor.from_pretrained(blip_model_name)
return [blip_model_instance.generate_caption(image) for image in images]
# Gradio Interfaces
zero_shot_classification_interface = gr.Interface(
fn=zero_shot_classification,
inputs=[
gr.Image(label="Image Query", elem_id="image_input"),
gr.Textbox(label="Labels (comma-separated)", elem_id="labels_input"),
],
outputs=gr.Label(elem_id="label_image"),
)
text_to_image_interface = gr.Interface(
fn=text_to_image_interface,
inputs=[
gr.Textbox(
lines=2,
label="Text Query",
placeholder="Enter text here...",
),
gr.Slider(0, 5, step=1, label="Top K Results"),
],
outputs=[
gr.Gallery(
label="Text-to-Image Search Results",
elem_id="gallery_text",
grid_cols=2,
height="auto",
),
gr.Text(label="Result Information", elem_id="text_info"),
],
)
blip_model = BLIPImageCaptioning(blip_model_name) # Instantiate the object
blip_captioning_interface = gr.Interface(
fn=blip_model.generate_caption, # Correct the method name
inputs=gr.Image(label="Image for Captioning", elem_id="blip_caption_image"),
outputs=gr.Textbox(label="Generated Captions", elem_id="blip_generated_captions", default=""),
)
preprocessing_interface = gr.Interface(
fn=blip_model.preprocess_image, # Correct the method name
inputs=[
gr.Image(label="Original Image", elem_id="original_image"),
],
outputs=[
gr.Image(label="Processed Image", elem_id="processed_image"),
],
)
# Tabbed Interface
app = gr.TabbedInterface(
interface_list=[text_to_image_interface, zero_shot_classification_interface, blip_captioning_interface],
tab_names=["Text-to-Image Search", "Zero-Shot Classification", "BLIP Image Captioning"],
)
# Launch the Gradio interface
app.launch(debug=True, share="true") |