Reyad-Ahmmed commited on
Commit
195c96a
·
verified ·
1 Parent(s): 03de5fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -2
app.py CHANGED
@@ -93,7 +93,10 @@ if (should_train_model=='1'): #train model
93
 
94
  repo_name = "Reyad-Ahmmed/hf-data-timeframe"
95
 
96
- tokenizer = BertTokenizer.from_pretrained(repo_name, subfolder="bert_embeddings_finetune")
 
 
 
97
  # I made sure to add all the ones in the training and eval data to this list
98
  # since we are training using data that only contains the left tag - we don't need right tags added to this list
99
  new_tokens = ['<EMPLOYEE_FIRST_NAME>', '<EMPLOYEE_LAST_NAME>','<POINT_ADDRESS>', '<TRUCK_NAME>', '<POINT_CLASS_NAME>', '<POINT_NAME>', '<TRUCK_CLASS_NAME>', '<TRUCK_STATUS_NAME>]']
@@ -101,7 +104,9 @@ if (should_train_model=='1'): #train model
101
 
102
 
103
  # Model
104
- model = BertForSequenceClassification.from_pretrained(repo_name, subfolder="bert_embeddings_finetune", output_attentions=True, num_labels=len(label_mapping), output_hidden_states=True).to('cpu')
 
 
105
 
106
  # Reset tokenizer size to include the new size after adding the tags to the tokenizer's tokens
107
  model.resize_token_embeddings(len(tokenizer))
 
93
 
94
  repo_name = "Reyad-Ahmmed/hf-data-timeframe"
95
 
96
+ #tokenizer = BertTokenizer.from_pretrained(repo_name, subfolder="bert_embeddings_finetune
97
+
98
+ tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
99
+
100
  # I made sure to add all the ones in the training and eval data to this list
101
  # since we are training using data that only contains the left tag - we don't need right tags added to this list
102
  new_tokens = ['<EMPLOYEE_FIRST_NAME>', '<EMPLOYEE_LAST_NAME>','<POINT_ADDRESS>', '<TRUCK_NAME>', '<POINT_CLASS_NAME>', '<POINT_NAME>', '<TRUCK_CLASS_NAME>', '<TRUCK_STATUS_NAME>]']
 
104
 
105
 
106
  # Model
107
+ #model = BertForSequenceClassification.from_pretrained(repo_name, subfolder="bert_embeddings_finetune", output_attentions=True, num_labels=len(label_mapping), output_hidden_states=True).to('cpu')
108
+
109
+ model = BertForSequenceClassification.from_pretrained("bert-base-uncased", output_attentions=True, num_labels=len(label_mapping), output_hidden_states=True).to('cpu')
110
 
111
  # Reset tokenizer size to include the new size after adding the tags to the tokenizer's tokens
112
  model.resize_token_embeddings(len(tokenizer))