Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -29,6 +29,7 @@ import os
|
|
| 29 |
from flask import Flask, jsonify, request
|
| 30 |
import requests
|
| 31 |
from fetch_data import fetch_and_update_training_data
|
|
|
|
| 32 |
|
| 33 |
# Load configuration file
|
| 34 |
with open('config.json', 'r') as config_file:
|
|
@@ -308,3 +309,56 @@ else:
|
|
| 308 |
model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
|
| 309 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
| 310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
from flask import Flask, jsonify, request
|
| 30 |
import requests
|
| 31 |
from fetch_data import fetch_and_update_training_data
|
| 32 |
+
import gradio as gr
|
| 33 |
|
| 34 |
# Load configuration file
|
| 35 |
with open('config.json', 'r') as config_file:
|
|
|
|
| 309 |
model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
|
| 310 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
| 311 |
|
| 312 |
+
#Function to classify user input
|
| 313 |
+
def classify_user_input(user_input):
|
| 314 |
+
while True:
|
| 315 |
+
|
| 316 |
+
# Tokenize and predict
|
| 317 |
+
input_encoding = tokenizer(user_input, padding=True, truncation=True, return_tensors="pt").to('cuda')
|
| 318 |
+
|
| 319 |
+
with torch.no_grad():
|
| 320 |
+
#attention_mask = input_encoding['attention_mask'].clone()
|
| 321 |
+
|
| 322 |
+
# Modify the attention mask to emphasize certain key tokens
|
| 323 |
+
for idx, token_id in enumerate(input_encoding['input_ids'][0]):
|
| 324 |
+
word = tokenizer.decode([token_id])
|
| 325 |
+
print(word)
|
| 326 |
+
#if word.strip() in ["point", "summarize", "oil", "maintenance"]: # Target key tokens
|
| 327 |
+
#attention_mask[0, idx] = 2 # Increase attention weight for these words
|
| 328 |
+
# else:
|
| 329 |
+
# attention_mask[0, idx] = 0
|
| 330 |
+
#print (attention_mask)
|
| 331 |
+
#input_encoding['attention_mask'] = attention_mask
|
| 332 |
+
output = model(**input_encoding, output_hidden_states=True)
|
| 333 |
+
# print('start-logits')
|
| 334 |
+
# print(output.logits)
|
| 335 |
+
# print('end-logits')
|
| 336 |
+
#print(output)
|
| 337 |
+
attention = output.attentions # Get attention scores
|
| 338 |
+
#print('atten')
|
| 339 |
+
#print(attention)
|
| 340 |
+
# Apply softmax to get the probabilities (confidence scores)
|
| 341 |
+
probabilities = F.softmax(output.logits, dim=-1)
|
| 342 |
+
|
| 343 |
+
# tokens = tokenizer.convert_ids_to_tokens(input_encoding['input_ids'][0].cpu().numpy())
|
| 344 |
+
# # Display the attention visualization
|
| 345 |
+
# input_text = tokenizer.convert_ids_to_tokens(input_encoding['input_ids'][0])
|
| 346 |
+
|
| 347 |
+
prediction = torch.argmax(output.logits, dim=1).cpu().numpy()
|
| 348 |
+
|
| 349 |
+
# Map prediction back to label
|
| 350 |
+
print(prediction)
|
| 351 |
+
predicted_label = label_mapping_reverse[prediction[0]]
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
print(f"Predicted intent: {predicted_label}\n")
|
| 355 |
+
# Print the confidence for each label
|
| 356 |
+
print("\nLabel Confidence Scores:")
|
| 357 |
+
for i, label in label_mapping_reverse.items():
|
| 358 |
+
confidence = probabilities[0][i].item() # Get confidence score for each label
|
| 359 |
+
print(f"{label}: {confidence:.4f}")
|
| 360 |
+
print("\n")
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
iface = gr.Interface(fn=classify_user_input, inputs="text", outputs="text")
|
| 364 |
+
iface.launch(share=True)
|