Reyad-Ahmmed commited on
Commit
6a1fc45
·
verified ·
1 Parent(s): 1dbe44c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -24
app.py CHANGED
@@ -71,18 +71,10 @@ if (should_train_model=='1'): #train model
71
  bias_non_fleet = 1.0
72
  epochs_to_run = 15
73
 
74
- #file_path_train = train_file + ".csv"
75
- #file_path_test = test_file + ".csv"
76
-
77
- # Read the CSV files into pandas DataFrames they will later by converted to DataTables and used to train and evaluate the model
78
- #file_train_df = pd.read_csv(file_path_train)
79
- #file_test_df = pd.read_csv(file_path_test)
80
-
81
  file_path_train = train_file + ".csv"
82
  file_path_test = test_file + ".csv"
83
 
84
  # Read the CSV files into pandas DataFrames they will later by converted to DataTables and used to train and evaluate the model
85
- #file_train_df = pd.read_csv(file_path_train)
86
 
87
  file_train_df = fetch_and_update_training_data(file_path_train)
88
  file_test_df = pd.read_csv(file_path_test)
@@ -181,7 +173,6 @@ if (should_train_model=='1'): #train model
181
  accuracy = (preds == labels).astype(float).mean()
182
  return {"accuracy": accuracy}
183
 
184
-
185
  training_args = TrainingArguments(
186
  output_dir='./results',
187
  num_train_epochs=epochs_to_run,
@@ -195,10 +186,6 @@ if (should_train_model=='1'): #train model
195
  evaluation_strategy="epoch",
196
  )
197
 
198
- # notice the bias_non_float in next line (it is given a value at top of code)
199
- # class_weights = torch.tensor([1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,bias_non_fleet,1.0,1.0]) # Replace with your actual class weights
200
- # class_weights = class_weights.to('cuda' if torch.cuda.is_available() else 'cpu')
201
-
202
  # This is needed b/c loss_fn is swapped out in order to use weighted loss
203
  # Any class weights that are not equal to one will make the model more (if greater than one) or less (if less than one)sensitive to given label
204
  class CustomTrainer(Trainer):
@@ -222,14 +209,6 @@ if (should_train_model=='1'): #train model
222
  tokenizer=tokenizer
223
  )
224
 
225
- # Train the model and set timer to measure the training time
226
- start_time = time.time()
227
- trainer.train()
228
- end_time = time.time()
229
- execution_time = end_time - start_time
230
-
231
- print(f"Execution Time: {execution_time:.2f} seconds")
232
-
233
  # send validation prompts through the model - will be used in error-analysis matrix below
234
  preds_output = trainer.predict(emotions_encoded["validation"])
235
 
@@ -311,14 +290,12 @@ if (should_train_model=='1'): #train model
311
  create_repo(repo_id=repo_name, token=api_token, exist_ok=True)
312
 
313
  # Upload the model and tokenizer to the Hugging Face repository
314
-
315
  upload_folder(
316
  folder_path=f"{model_save_path}",
317
  path_in_repo=f"{model_save_path}",
318
  repo_id=repo_name,
319
  token=api_token,
320
- commit_message="Push model",
321
- #overwrite=True # Force overwrite existing files
322
  )
323
 
324
  else:
 
71
  bias_non_fleet = 1.0
72
  epochs_to_run = 15
73
 
 
 
 
 
 
 
 
74
  file_path_train = train_file + ".csv"
75
  file_path_test = test_file + ".csv"
76
 
77
  # Read the CSV files into pandas DataFrames they will later by converted to DataTables and used to train and evaluate the model
 
78
 
79
  file_train_df = fetch_and_update_training_data(file_path_train)
80
  file_test_df = pd.read_csv(file_path_test)
 
173
  accuracy = (preds == labels).astype(float).mean()
174
  return {"accuracy": accuracy}
175
 
 
176
  training_args = TrainingArguments(
177
  output_dir='./results',
178
  num_train_epochs=epochs_to_run,
 
186
  evaluation_strategy="epoch",
187
  )
188
 
 
 
 
 
189
  # This is needed b/c loss_fn is swapped out in order to use weighted loss
190
  # Any class weights that are not equal to one will make the model more (if greater than one) or less (if less than one)sensitive to given label
191
  class CustomTrainer(Trainer):
 
209
  tokenizer=tokenizer
210
  )
211
 
 
 
 
 
 
 
 
 
212
  # send validation prompts through the model - will be used in error-analysis matrix below
213
  preds_output = trainer.predict(emotions_encoded["validation"])
214
 
 
290
  create_repo(repo_id=repo_name, token=api_token, exist_ok=True)
291
 
292
  # Upload the model and tokenizer to the Hugging Face repository
 
293
  upload_folder(
294
  folder_path=f"{model_save_path}",
295
  path_in_repo=f"{model_save_path}",
296
  repo_id=repo_name,
297
  token=api_token,
298
+ commit_message="Push model and tokenizer",
 
299
  )
300
 
301
  else: