Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -71,18 +71,10 @@ if (should_train_model=='1'): #train model
|
|
71 |
bias_non_fleet = 1.0
|
72 |
epochs_to_run = 15
|
73 |
|
74 |
-
#file_path_train = train_file + ".csv"
|
75 |
-
#file_path_test = test_file + ".csv"
|
76 |
-
|
77 |
-
# Read the CSV files into pandas DataFrames they will later by converted to DataTables and used to train and evaluate the model
|
78 |
-
#file_train_df = pd.read_csv(file_path_train)
|
79 |
-
#file_test_df = pd.read_csv(file_path_test)
|
80 |
-
|
81 |
file_path_train = train_file + ".csv"
|
82 |
file_path_test = test_file + ".csv"
|
83 |
|
84 |
# Read the CSV files into pandas DataFrames they will later by converted to DataTables and used to train and evaluate the model
|
85 |
-
#file_train_df = pd.read_csv(file_path_train)
|
86 |
|
87 |
file_train_df = fetch_and_update_training_data(file_path_train)
|
88 |
file_test_df = pd.read_csv(file_path_test)
|
@@ -181,7 +173,6 @@ if (should_train_model=='1'): #train model
|
|
181 |
accuracy = (preds == labels).astype(float).mean()
|
182 |
return {"accuracy": accuracy}
|
183 |
|
184 |
-
|
185 |
training_args = TrainingArguments(
|
186 |
output_dir='./results',
|
187 |
num_train_epochs=epochs_to_run,
|
@@ -195,10 +186,6 @@ if (should_train_model=='1'): #train model
|
|
195 |
evaluation_strategy="epoch",
|
196 |
)
|
197 |
|
198 |
-
# notice the bias_non_float in next line (it is given a value at top of code)
|
199 |
-
# class_weights = torch.tensor([1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,bias_non_fleet,1.0,1.0]) # Replace with your actual class weights
|
200 |
-
# class_weights = class_weights.to('cuda' if torch.cuda.is_available() else 'cpu')
|
201 |
-
|
202 |
# This is needed b/c loss_fn is swapped out in order to use weighted loss
|
203 |
# Any class weights that are not equal to one will make the model more (if greater than one) or less (if less than one)sensitive to given label
|
204 |
class CustomTrainer(Trainer):
|
@@ -222,14 +209,6 @@ if (should_train_model=='1'): #train model
|
|
222 |
tokenizer=tokenizer
|
223 |
)
|
224 |
|
225 |
-
# Train the model and set timer to measure the training time
|
226 |
-
start_time = time.time()
|
227 |
-
trainer.train()
|
228 |
-
end_time = time.time()
|
229 |
-
execution_time = end_time - start_time
|
230 |
-
|
231 |
-
print(f"Execution Time: {execution_time:.2f} seconds")
|
232 |
-
|
233 |
# send validation prompts through the model - will be used in error-analysis matrix below
|
234 |
preds_output = trainer.predict(emotions_encoded["validation"])
|
235 |
|
@@ -311,14 +290,12 @@ if (should_train_model=='1'): #train model
|
|
311 |
create_repo(repo_id=repo_name, token=api_token, exist_ok=True)
|
312 |
|
313 |
# Upload the model and tokenizer to the Hugging Face repository
|
314 |
-
|
315 |
upload_folder(
|
316 |
folder_path=f"{model_save_path}",
|
317 |
path_in_repo=f"{model_save_path}",
|
318 |
repo_id=repo_name,
|
319 |
token=api_token,
|
320 |
-
commit_message="Push model",
|
321 |
-
#overwrite=True # Force overwrite existing files
|
322 |
)
|
323 |
|
324 |
else:
|
|
|
71 |
bias_non_fleet = 1.0
|
72 |
epochs_to_run = 15
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
file_path_train = train_file + ".csv"
|
75 |
file_path_test = test_file + ".csv"
|
76 |
|
77 |
# Read the CSV files into pandas DataFrames they will later by converted to DataTables and used to train and evaluate the model
|
|
|
78 |
|
79 |
file_train_df = fetch_and_update_training_data(file_path_train)
|
80 |
file_test_df = pd.read_csv(file_path_test)
|
|
|
173 |
accuracy = (preds == labels).astype(float).mean()
|
174 |
return {"accuracy": accuracy}
|
175 |
|
|
|
176 |
training_args = TrainingArguments(
|
177 |
output_dir='./results',
|
178 |
num_train_epochs=epochs_to_run,
|
|
|
186 |
evaluation_strategy="epoch",
|
187 |
)
|
188 |
|
|
|
|
|
|
|
|
|
189 |
# This is needed b/c loss_fn is swapped out in order to use weighted loss
|
190 |
# Any class weights that are not equal to one will make the model more (if greater than one) or less (if less than one)sensitive to given label
|
191 |
class CustomTrainer(Trainer):
|
|
|
209 |
tokenizer=tokenizer
|
210 |
)
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
# send validation prompts through the model - will be used in error-analysis matrix below
|
213 |
preds_output = trainer.predict(emotions_encoded["validation"])
|
214 |
|
|
|
290 |
create_repo(repo_id=repo_name, token=api_token, exist_ok=True)
|
291 |
|
292 |
# Upload the model and tokenizer to the Hugging Face repository
|
|
|
293 |
upload_folder(
|
294 |
folder_path=f"{model_save_path}",
|
295 |
path_in_repo=f"{model_save_path}",
|
296 |
repo_id=repo_name,
|
297 |
token=api_token,
|
298 |
+
commit_message="Push model and tokenizer",
|
|
|
299 |
)
|
300 |
|
301 |
else:
|