Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -97,6 +97,19 @@ if (runModel=='1'):
|
|
97 |
test_dataset = IntentDataset(test_encodings, list(test_df['label']))
|
98 |
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
# Create an instance of the custom loss function
|
102 |
training_args = TrainingArguments(
|
@@ -109,6 +122,15 @@ if (runModel=='1'):
|
|
109 |
logging_dir='./logs_' + modelNameToUse,
|
110 |
logging_steps=10,
|
111 |
evaluation_strategy="epoch",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
)
|
113 |
|
114 |
trainer = Trainer(
|
@@ -173,31 +195,29 @@ if (runModel=='1'):
|
|
173 |
#model.save_pretrained('./' + modelNameToUse + '_model')
|
174 |
#tokenizer.save_pretrained('./' + modelNameToUse + '_tokenizer')
|
175 |
|
176 |
-
|
177 |
-
|
|
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
api = HfApi()
|
182 |
-
create_repo(repo_id=repo_name, token=api_token, exist_ok=True)
|
183 |
-
|
184 |
-
model.save_pretrained("/data-timeframe_model")
|
185 |
-
tokenizer.save_pretrained("/data-timeframe_tokenizer")
|
186 |
|
187 |
# Upload the model and tokenizer to the Hugging Face repository
|
188 |
-
upload_folder(
|
189 |
-
folder_path=
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
upload_folder(
|
196 |
-
folder_path=
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
200 |
)
|
|
|
201 |
|
202 |
else:
|
203 |
print('Load Pre-trained')
|
|
|
97 |
test_dataset = IntentDataset(test_encodings, list(test_df['label']))
|
98 |
|
99 |
|
100 |
+
# Your repository name
|
101 |
+
repo_name = "Reyad-Ahmmed/hf-data-timeframe"
|
102 |
+
|
103 |
+
|
104 |
+
api_token = os.getenv("HF_API_TOKEN") # Retrieve the API token from environment variable
|
105 |
+
|
106 |
+
if not api_token:
|
107 |
+
raise ValueError("API token not found. Please set the HF_API_TOKEN environment variable.")
|
108 |
+
|
109 |
+
# Create repository (if not already created)
|
110 |
+
api = HfApi()
|
111 |
+
create_repo(repo_id=repo_name, token=api_token, exist_ok=True)
|
112 |
+
|
113 |
|
114 |
# Create an instance of the custom loss function
|
115 |
training_args = TrainingArguments(
|
|
|
122 |
logging_dir='./logs_' + modelNameToUse,
|
123 |
logging_steps=10,
|
124 |
evaluation_strategy="epoch",
|
125 |
+
|
126 |
+
)
|
127 |
+
|
128 |
+
upload_folder(
|
129 |
+
folder_path=training_args.output_dir,
|
130 |
+
path_in_repo=f"{modelNameToUse}_results",
|
131 |
+
repo_id=repo_name,
|
132 |
+
token=api_token,
|
133 |
+
commit_message="Upload training results"
|
134 |
)
|
135 |
|
136 |
trainer = Trainer(
|
|
|
195 |
#model.save_pretrained('./' + modelNameToUse + '_model')
|
196 |
#tokenizer.save_pretrained('./' + modelNameToUse + '_tokenizer')
|
197 |
|
198 |
+
# Save the model and tokenizer locally
|
199 |
+
local_model_path = "./data-timeframe_model"
|
200 |
+
local_tokenizer_path = "./data-timeframe_tokenizer"
|
201 |
|
202 |
+
model.save_pretrained(local_model_path)
|
203 |
+
tokenizer.save_pretrained(local_tokenizer_path)
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
# Upload the model and tokenizer to the Hugging Face repository
|
206 |
+
upload_folder(
|
207 |
+
folder_path=local_model_path,
|
208 |
+
path_in_repo="data-timeframe_model",
|
209 |
+
repo_id=repo_name,
|
210 |
+
token=api_token,
|
211 |
+
commit_message="Update fine-tuned model"
|
212 |
+
)
|
213 |
+
upload_folder(
|
214 |
+
folder_path=local_tokenizer_path,
|
215 |
+
path_in_repo="data-timeframe_tokenizer",
|
216 |
+
repo_id=repo_name,
|
217 |
+
token=api_token,
|
218 |
+
commit_message="Update fine-tuned tokenizer"
|
219 |
)
|
220 |
+
|
221 |
|
222 |
else:
|
223 |
print('Load Pre-trained')
|