Reyad-Ahmmed commited on
Commit
affb121
·
verified ·
1 Parent(s): 68d42ea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -229
app.py CHANGED
@@ -1,229 +1 @@
1
- import pandas as pd
2
- from sklearn.model_selection import train_test_split
3
- from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
4
- import torch
5
- from torch.utils.data import Dataset
6
- from torch.utils.data import DataLoader
7
- from transformers import RobertaTokenizer, RobertaForSequenceClassification
8
- import pandas as pd
9
-
10
- #from sklearn.linear_model import LogisticRegression
11
- #from sklearn.metrics import accuracy_score, confusion_matrix
12
- #import matplotlib.pyplot as plt
13
- import seaborn as sns
14
- #import numpy as np
15
- import sys
16
- import torch.nn.functional as F
17
- #from torch.nn import CrossEntropyLoss
18
- #from sklearn.decomposition import PCA
19
- import matplotlib.pyplot as plt
20
-
21
- if len(sys.argv) > 1:
22
- # sys.argv[0] is the script name, sys.argv[1] is the first argument, etc.
23
- runModel = sys.argv[1]
24
- print(f"Passed value: {runModel}")
25
- print (sys.argv[2])
26
-
27
- else:
28
- print("No argument was passed.")
29
-
30
-
31
- device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
32
- modelNameToUse = sys.argv[2]
33
-
34
- if (runModel=='1'):
35
- dataFileName = sys.argv[2] + '.csv'
36
- print (dataFileName)
37
- # Load the data from the CSV file
38
- df = pd.read_csv(dataFileName)
39
- # Access the text and labels
40
- texts = df['text'].tolist()
41
- labels = df['label'].tolist()
42
-
43
- print('Train Model')
44
- # Encode the labels
45
- sorted_labels = sorted(df['label'].unique())
46
- label_mapping = {label: i for i, label in enumerate(sorted_labels)}
47
- df['label'] = df['label'].map(label_mapping)
48
- print(df['label'])
49
- # Train/test split
50
- train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
51
-
52
- # Tokenization
53
- tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
54
-
55
- # Model and training setup
56
- model = RobertaForSequenceClassification.from_pretrained('roberta-base', output_attentions=True, num_labels=len(label_mapping)).to('cpu')
57
-
58
- model.resize_token_embeddings(len(tokenizer))
59
-
60
- train_encodings = tokenizer(list(train_df['text']), truncation=True, padding=True, max_length=64)
61
- test_encodings = tokenizer(list(test_df['text']), truncation=True, padding=True, max_length=64)
62
-
63
- # Dataset class
64
- class IntentDataset(Dataset):
65
- def __init__(self, encodings, labels):
66
-
67
- self.encodings = encodings
68
- self.labels = labels
69
-
70
- def __getitem__(self, idx):
71
- item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
72
- label = self.labels[idx]
73
- item['labels'] = torch.tensor(self.labels[idx])
74
-
75
-
76
- return item
77
-
78
- def __len__(self):
79
- return len(self.labels)
80
-
81
- train_dataset = IntentDataset(train_encodings, list(train_df['label']))
82
- test_dataset = IntentDataset(test_encodings, list(test_df['label']))
83
-
84
-
85
-
86
- # Create an instance of the custom loss function
87
- training_args = TrainingArguments(
88
- output_dir='./results_' + modelNameToUse,
89
- num_train_epochs=25,
90
- per_device_train_batch_size=2,
91
- per_device_eval_batch_size=2,
92
- warmup_steps=500,
93
- weight_decay=0.02,
94
- logging_dir='./logs_' + modelNameToUse,
95
- logging_steps=10,
96
- evaluation_strategy="epoch",
97
- )
98
-
99
- trainer = Trainer(
100
- model=model,
101
- args=training_args,
102
- train_dataset=train_dataset,
103
- eval_dataset=test_dataset
104
- )
105
-
106
- # Train the model
107
- trainer.train()
108
-
109
- # Evaluate the model
110
- trainer.evaluate()
111
-
112
- label_mapping = {
113
- 0: "lastmonth",
114
- 1: "nextweek",
115
- 2: "sevendays",
116
- 3: "today",
117
- 4: "tomorrow",
118
- 5: "yesterday"
119
-
120
- }
121
-
122
- def evaluate_and_report_errors(model, dataloader, tokenizer):
123
- model.eval()
124
- incorrect_predictions = []
125
- with torch.no_grad():
126
- #print(dataloader)
127
- for batch in dataloader:
128
- input_ids = batch['input_ids'].to(device)
129
- attention_mask = batch['attention_mask'].to(device)
130
- labels = batch['labels'].to(device)
131
- outputs = model(input_ids=input_ids, attention_mask=attention_mask)
132
- logits = outputs.logits
133
- predictions = torch.argmax(logits, dim=1)
134
-
135
- for i, prediction in enumerate(predictions):
136
- if prediction != labels[i]:
137
- incorrect_predictions.append({
138
- "prompt": tokenizer.decode(input_ids[i], skip_special_tokens=True),
139
- "predicted": prediction.item(),
140
- "actual": labels[i].item()
141
- })
142
-
143
- # Print incorrect predictions
144
- if incorrect_predictions:
145
- print("\nIncorrect Predictions:")
146
- for error in incorrect_predictions:
147
- print(f"Sentence: {error['prompt']}")
148
- #print(f"Predicted Label: {GetCategoryFromCategoryLong(error['predicted'])} | Actual Label: {GetCategoryFromCategoryLong(error['actual'])}\n")
149
- print(f"Predicted Label: {label_mapping[error['predicted']]} | Actual Label: {label_mapping[error['actual']]}\n")
150
- #print(f"Predicted Label: {error['predicted']} | Actual Label: {label_mapping[error['actual']]}\n")
151
- else:
152
- print("\nNo incorrect predictions found.")
153
-
154
- train_dataloader = DataLoader(train_dataset, batch_size=10, shuffle=True)
155
- evaluate_and_report_errors(model,train_dataloader, tokenizer)
156
-
157
- # Save the model and tokenizer
158
- model.save_pretrained('./' + modelNameToUse + '_model')
159
- tokenizer.save_pretrained('./' + modelNameToUse + '_tokenizer')
160
- else:
161
- print('Load Pre-trained')
162
- model_save_path = "./" + modelNameToUse + "_model"
163
- tokenizer_save_path = "./" + modelNameToUse + "_tokenizer"
164
-
165
- # RobertaTokenizer.from_pretrained(model_save_path)
166
- model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
167
- tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
168
-
169
- #Define the label mappings (this must match the mapping used during training)
170
- label_mapping = {
171
- 0: "lastmonth",
172
- 1: "nextweek",
173
- 2: "sevendays",
174
- 3: "today",
175
- 4: "tomorrow",
176
- 5: "yesterday"
177
- }
178
-
179
-
180
- #Function to classify user input
181
- def classifyTimeFrame():
182
- while True:
183
- user_input = input("Enter a command (or type 'q' to quit): ")
184
- if user_input.lower() == 'q':
185
- print("Exiting...")
186
- break
187
-
188
- # Tokenize and predict
189
- input_encoding = tokenizer(user_input, padding=True, truncation=True, return_tensors="pt").to('cpu')
190
-
191
- with torch.no_grad():
192
- attention_mask = input_encoding['attention_mask'].clone()
193
-
194
-
195
-
196
- # Modify the attention mask to emphasize certain key tokens
197
- # for idx, token_id in enumerate(input_encoding['input_ids'][0]):
198
- # word = tokenizer.decode([token_id])
199
- # print(word)
200
- # if word.strip() in ["now", "same", "continue", "again", "also"]: # Target key tokens
201
- # attention_mask[0, idx] = 3 # Increase attention weight for these words
202
- # else:
203
- # attention_mask[0, idx] = 0
204
- # print (attention_mask)
205
- # input_encoding['attention_mask'] = attention_mask
206
- # print (input_encoding)
207
- output = model(**input_encoding, output_hidden_states=True)
208
-
209
- probabilities = F.softmax(output.logits, dim=-1)
210
-
211
- prediction = torch.argmax(output.logits, dim=1).cpu().numpy()
212
-
213
- # Map prediction back to label
214
- print(prediction)
215
- predicted_label = label_mapping[prediction[0]]
216
-
217
-
218
- print(f"Predicted intent: {predicted_label}\n")
219
- # Print the confidence for each label
220
- print("\nLabel Confidence Scores:")
221
- for i, label in label_mapping.items():
222
- confidence = probabilities[0][i].item() # Get confidence score for each label
223
- print(f"{label}: {confidence:.4f}")
224
- print("\n")
225
-
226
- #Run the function
227
- classifyTimeFrame()
228
-
229
-
 
1
+ print("hello world")