Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -296,8 +296,8 @@ if (should_train_model=='1'): #train model
|
|
296 |
model.config.label_mapping = label_mapping
|
297 |
|
298 |
# Save the model and tokenizer
|
299 |
-
model.save_pretrained(f"./{model_save_path}
|
300 |
-
tokenizer.save_pretrained(f"./{model_save_path}
|
301 |
|
302 |
#for push repository
|
303 |
repo_name = "Reyad-Ahmmed/hf-data-timeframe"
|
@@ -315,35 +315,19 @@ if (should_train_model=='1'): #train model
|
|
315 |
# Upload the model and tokenizer to the Hugging Face repository
|
316 |
|
317 |
upload_folder(
|
318 |
-
folder_path=f"{model_save_path}
|
319 |
-
path_in_repo=f"{model_save_path}
|
320 |
repo_id=repo_name,
|
321 |
token=api_token,
|
322 |
commit_message="Push model",
|
323 |
#overwrite=True # Force overwrite existing files
|
324 |
)
|
325 |
-
|
326 |
-
upload_folder(
|
327 |
-
folder_path=f"{model_save_path}_tokenizer",
|
328 |
-
path_in_repo=f"{model_save_path}_tokenizer",
|
329 |
-
repo_id=repo_name,
|
330 |
-
token=api_token,
|
331 |
-
commit_message="Push tokenizer",
|
332 |
-
#overwrite=True # Force overwrite existing files
|
333 |
-
)
|
334 |
-
|
335 |
-
url = "http://210.1.253.35:200/api/hello" # Example API
|
336 |
-
response = requests.get(url, timeout=120)
|
337 |
-
|
338 |
-
if response.status_code == 200:
|
339 |
-
jsonify({"message": "Hello, World!"})
|
340 |
-
else:
|
341 |
-
print(f"Error: {response.status_code}")
|
342 |
|
343 |
else:
|
344 |
print('Load Pre-trained')
|
345 |
-
model_save_path = f"./{model_save_path}
|
346 |
-
tokenizer_save_path = f"./{model_save_path}
|
|
|
347 |
# RobertaTokenizer.from_pretrained(model_save_path)
|
348 |
model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
|
349 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
|
|
296 |
model.config.label_mapping = label_mapping
|
297 |
|
298 |
# Save the model and tokenizer
|
299 |
+
model.save_pretrained(f"./{model_save_path}")
|
300 |
+
tokenizer.save_pretrained(f"./{model_save_path}")
|
301 |
|
302 |
#for push repository
|
303 |
repo_name = "Reyad-Ahmmed/hf-data-timeframe"
|
|
|
315 |
# Upload the model and tokenizer to the Hugging Face repository
|
316 |
|
317 |
upload_folder(
|
318 |
+
folder_path=f"{model_save_path}",
|
319 |
+
path_in_repo=f"{model_save_path}",
|
320 |
repo_id=repo_name,
|
321 |
token=api_token,
|
322 |
commit_message="Push model",
|
323 |
#overwrite=True # Force overwrite existing files
|
324 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
else:
|
327 |
print('Load Pre-trained')
|
328 |
+
model_save_path = f"./{model_save_path}"
|
329 |
+
tokenizer_save_path = f"./{model_save_path}"
|
330 |
+
|
331 |
# RobertaTokenizer.from_pretrained(model_save_path)
|
332 |
model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
|
333 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|