Reyad-Ahmmed commited on
Commit
dc1f991
·
verified ·
1 Parent(s): d14cc37

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -8
app.py CHANGED
@@ -26,6 +26,7 @@ import pprint
26
  import json
27
  from huggingface_hub import HfApi, login, upload_folder, create_repo
28
  import os
 
29
 
30
  # Load configuration file
31
  with open('config.json', 'r') as config_file:
@@ -65,7 +66,7 @@ if (should_train_model=='1'): #train model
65
  #settings
66
  model_save_path = path_to_save_trained_model_to
67
  bias_non_fleet = 1.0
68
- epochs_to_run = .1
69
 
70
  file_path_train = train_file + ".csv"
71
  file_path_test = test_file + ".csv"
@@ -316,14 +317,22 @@ if (should_train_model=='1'): #train model
316
  commit_message="Push tokenizer",
317
  #overwrite=True # Force overwrite existing files
318
  )
 
 
 
319
 
320
- else:
321
- print('Load Pre-trained')
322
- model_save_path = f"./{model_save_path}_model"
323
- tokenizer_save_path = f"./{model_save_path}_tokenizer"
324
- # RobertaTokenizer.from_pretrained(model_save_path)
325
- model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
326
- tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
 
 
 
 
 
327
 
328
  #Define the label mappings (this must match the mapping used during training)
329
  label_mapping = model.config.label_mapping
 
26
  import json
27
  from huggingface_hub import HfApi, login, upload_folder, create_repo
28
  import os
29
+ import requests
30
 
31
  # Load configuration file
32
  with open('config.json', 'r') as config_file:
 
66
  #settings
67
  model_save_path = path_to_save_trained_model_to
68
  bias_non_fleet = 1.0
69
+ epochs_to_run = .01
70
 
71
  file_path_train = train_file + ".csv"
72
  file_path_test = test_file + ".csv"
 
317
  commit_message="Push tokenizer",
318
  #overwrite=True # Force overwrite existing files
319
  )
320
+
321
+ url = "http://210.1.253.35:200/api/hello" # Example API
322
+ response = requests.get(url)
323
 
324
+ if response.status_code == 200:
325
+ data = response.json() # Convert response to JSON
326
+ print(data)
327
+ else:
328
+ print(f"Error: {response.status_code}")
329
+ else:
330
+ print('Load Pre-trained')
331
+ model_save_path = f"./{model_save_path}_model"
332
+ tokenizer_save_path = f"./{model_save_path}_tokenizer"
333
+ # RobertaTokenizer.from_pretrained(model_save_path)
334
+ model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
335
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
336
 
337
  #Define the label mappings (this must match the mapping used during training)
338
  label_mapping = model.config.label_mapping