Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -330,69 +330,4 @@ else:
|
|
| 330 |
model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
|
| 331 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
| 332 |
|
| 333 |
-
#Define the label mappings (this must match the mapping used during training)
|
| 334 |
-
label_mapping = model.config.label_mapping
|
| 335 |
-
label_mapping_reverse = {value: key for key, value in label_mapping.items()}
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
#Function to classify user input
|
| 342 |
-
def classify_user_input():
|
| 343 |
-
while True:
|
| 344 |
-
user_input = input("Enter a command (or type 'q' to quit): ")
|
| 345 |
-
if user_input.lower() == 'q':
|
| 346 |
-
print("Exiting...")
|
| 347 |
-
break
|
| 348 |
-
|
| 349 |
-
# Tokenize and predict
|
| 350 |
-
input_encoding = tokenizer(user_input, padding=True, truncation=True, return_tensors="pt").to('cpu')
|
| 351 |
-
|
| 352 |
-
with torch.no_grad():
|
| 353 |
-
#attention_mask = input_encoding['attention_mask'].clone()
|
| 354 |
-
|
| 355 |
-
# Modify the attention mask to emphasize certain key tokens
|
| 356 |
-
for idx, token_id in enumerate(input_encoding['input_ids'][0]):
|
| 357 |
-
word = tokenizer.decode([token_id])
|
| 358 |
-
print(word)
|
| 359 |
-
#if word.strip() in ["point", "summarize", "oil", "maintenance"]: # Target key tokens
|
| 360 |
-
#attention_mask[0, idx] = 2 # Increase attention weight for these words
|
| 361 |
-
# else:
|
| 362 |
-
# attention_mask[0, idx] = 0
|
| 363 |
-
#print (attention_mask)
|
| 364 |
-
#input_encoding['attention_mask'] = attention_mask
|
| 365 |
-
output = model(**input_encoding, output_hidden_states=True)
|
| 366 |
-
# print('start-logits')
|
| 367 |
-
# print(output.logits)
|
| 368 |
-
# print('end-logits')
|
| 369 |
-
#print(output)
|
| 370 |
-
attention = output.attentions # Get attention scores
|
| 371 |
-
#print('atten')
|
| 372 |
-
#print(attention)
|
| 373 |
-
# Apply softmax to get the probabilities (confidence scores)
|
| 374 |
-
probabilities = F.softmax(output.logits, dim=-1)
|
| 375 |
-
|
| 376 |
-
# tokens = tokenizer.convert_ids_to_tokens(input_encoding['input_ids'][0].cpu().numpy())
|
| 377 |
-
# # Display the attention visualization
|
| 378 |
-
# input_text = tokenizer.convert_ids_to_tokens(input_encoding['input_ids'][0])
|
| 379 |
-
|
| 380 |
-
prediction = torch.argmax(output.logits, dim=1).cpu().numpy()
|
| 381 |
-
|
| 382 |
-
# Map prediction back to label
|
| 383 |
-
print(prediction)
|
| 384 |
-
predicted_label = label_mapping_reverse[prediction[0]]
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
print(f"Predicted intent: {predicted_label}\n")
|
| 388 |
-
# Print the confidence for each label
|
| 389 |
-
print("\nLabel Confidence Scores:")
|
| 390 |
-
for i, label in label_mapping_reverse.items():
|
| 391 |
-
confidence = probabilities[0][i].item() # Get confidence score for each label
|
| 392 |
-
print(f"{label}: {confidence:.4f}")
|
| 393 |
-
print("\n")
|
| 394 |
-
|
| 395 |
-
#Run the function
|
| 396 |
-
classify_user_input()
|
| 397 |
-
|
| 398 |
|
|
|
|
| 330 |
model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
|
| 331 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
| 332 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|