Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,8 @@ import torch.nn.functional as F
|
|
19 |
import matplotlib.pyplot as plt
|
20 |
import json
|
21 |
import gradio as gr
|
|
|
|
|
22 |
|
23 |
# Load configuration file
|
24 |
with open('config.json', 'r') as config_file:
|
@@ -171,8 +173,31 @@ if (runModel=='1'):
|
|
171 |
#model.save_pretrained('./' + modelNameToUse + '_model')
|
172 |
#tokenizer.save_pretrained('./' + modelNameToUse + '_tokenizer')
|
173 |
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
else:
|
178 |
print('Load Pre-trained')
|
|
|
19 |
import matplotlib.pyplot as plt
|
20 |
import json
|
21 |
import gradio as gr
|
22 |
+
from huggingface_hub import HfApi, upload_folder, create_repo
|
23 |
+
import os
|
24 |
|
25 |
# Load configuration file
|
26 |
with open('config.json', 'r') as config_file:
|
|
|
173 |
#model.save_pretrained('./' + modelNameToUse + '_model')
|
174 |
#tokenizer.save_pretrained('./' + modelNameToUse + '_tokenizer')
|
175 |
|
176 |
+
repo_name = "Reyad-Ahmmed/hf-data-timeframe" # Replace with your repository name
|
177 |
+
api_token = os.getenv("HF_API_TOKEN") # Replace with your actual API token
|
178 |
+
|
179 |
+
print("app token: ", api_token)
|
180 |
+
|
181 |
+
api = HfApi()
|
182 |
+
create_repo(repo_id=repo_name, token=api_token, exist_ok=True)
|
183 |
+
|
184 |
+
model.save_pretrained("/data-timeframe_model")
|
185 |
+
tokenizer.save_pretrained("/data-timeframe_tokenizer")
|
186 |
+
|
187 |
+
# Upload the model and tokenizer to the Hugging Face repository
|
188 |
+
upload_folder(
|
189 |
+
folder_path="/data-timeframe_model",
|
190 |
+
repo_id=repo_name,
|
191 |
+
token=api_token,
|
192 |
+
commit_message="Add fine-tuned model"
|
193 |
+
)
|
194 |
+
|
195 |
+
upload_folder(
|
196 |
+
folder_path="/data-timeframe_tokenizer",
|
197 |
+
repo_id=repo_name,
|
198 |
+
token=api_token,
|
199 |
+
commit_message="Add fine-tuned tokenizer"
|
200 |
+
)
|
201 |
|
202 |
else:
|
203 |
print('Load Pre-trained')
|