Reyad-Ahmmed commited on
Commit
f755e44
·
verified ·
1 Parent(s): 5171ffe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -2
app.py CHANGED
@@ -19,6 +19,8 @@ import torch.nn.functional as F
19
  import matplotlib.pyplot as plt
20
  import json
21
  import gradio as gr
 
 
22
 
23
  # Load configuration file
24
  with open('config.json', 'r') as config_file:
@@ -171,8 +173,31 @@ if (runModel=='1'):
171
  #model.save_pretrained('./' + modelNameToUse + '_model')
172
  #tokenizer.save_pretrained('./' + modelNameToUse + '_tokenizer')
173
 
174
- model.save_pretrained("hf-data-timeframe/data-timeframe_model")
175
- tokenizer.save_pretrained("hf-data-timeframe/data-timeframe_tokenizer")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
 
177
  else:
178
  print('Load Pre-trained')
 
19
  import matplotlib.pyplot as plt
20
  import json
21
  import gradio as gr
22
+ from huggingface_hub import HfApi, upload_folder, create_repo
23
+ import os
24
 
25
  # Load configuration file
26
  with open('config.json', 'r') as config_file:
 
173
  #model.save_pretrained('./' + modelNameToUse + '_model')
174
  #tokenizer.save_pretrained('./' + modelNameToUse + '_tokenizer')
175
 
176
+ repo_name = "Reyad-Ahmmed/hf-data-timeframe" # Replace with your repository name
177
+ api_token = os.getenv("HF_API_TOKEN") # Replace with your actual API token
178
+
179
+ print("app token: ", api_token)
180
+
181
+ api = HfApi()
182
+ create_repo(repo_id=repo_name, token=api_token, exist_ok=True)
183
+
184
+ model.save_pretrained("/data-timeframe_model")
185
+ tokenizer.save_pretrained("/data-timeframe_tokenizer")
186
+
187
+ # Upload the model and tokenizer to the Hugging Face repository
188
+ upload_folder(
189
+ folder_path="/data-timeframe_model",
190
+ repo_id=repo_name,
191
+ token=api_token,
192
+ commit_message="Add fine-tuned model"
193
+ )
194
+
195
+ upload_folder(
196
+ folder_path="/data-timeframe_tokenizer",
197
+ repo_id=repo_name,
198
+ token=api_token,
199
+ commit_message="Add fine-tuned tokenizer"
200
+ )
201
 
202
  else:
203
  print('Load Pre-trained')