File size: 1,475 Bytes
1b95475 609febe 6447be5 136ed2d ff25f09 6447be5 609febe 1b95475 6447be5 1b95475 609febe 6447be5 609febe 6447be5 609febe 6447be5 609febe 6447be5 1b95475 609febe 1b95475 6447be5 609febe 1b95475 ff25f09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import streamlit as st
import noisereduce as nr
import soundfile as sf
import io
import numpy as np
from pydub import AudioSegment
from pydub.silence import split_on_silence, detect_silence
# Define a Streamlit app
st.title("Audio Processing App")
# Upload the input audio file
uploaded_audio = st.file_uploader("Upload an audio file", type=["mp3", "wav", "ogg", "flac", "wma", "m4a"])
if uploaded_audio is not None:
audio_bytes = uploaded_audio.read()
# Convert audio file to numpy array
audio, sample_rate = sf.read(io.BytesIO(audio_bytes))
# Apply noise reduction
st.write("Applying noise reduction...")
reduced_audio_data = nr.reduce_noise(y=audio, sr=sample_rate)
# Create an AudioSegment from the reduced audio data
reduced_audio = AudioSegment(
reduced_audio_data.tobytes(),
frame_rate=sample_rate,
sample_width=reduced_audio_data.dtype.itemsize,
channels=1
)
# Split audio on silences
st.write("Inserting small silences...")
silence_segments = detect_silence(reduced_audio, min_silence_len=100, silence_thresh=-36)
silenced_audio = AudioSegment.empty()
for start, end in silence_segments:
silenced_audio += reduced_audio[start:end]
# Provide a link to download the processed audio
st.audio(silenced_audio.export(format="wav").read(), format="audio/wav")
# Run the Streamlit app
if __name__ == "__main__":
st.write("Upload an audio file to process.")
|