Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,43 @@
|
|
1 |
import streamlit as st
|
2 |
import speech_recognition as sr
|
3 |
-
from pydub import AudioSegment
|
4 |
|
5 |
-
|
6 |
-
st.title("Audio Trimming App")
|
7 |
-
st.write("Upload an audio file and enter the desired text. The app will trim the audio to match the specified text.")
|
8 |
-
|
9 |
-
# Upload an audio file
|
10 |
-
uploaded_audio = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
|
11 |
-
|
12 |
-
# Input text box
|
13 |
-
input_text = st.text_area("Enter the desired text")
|
14 |
-
|
15 |
-
# Function to trim audio
|
16 |
-
def trim_audio(input_audio, input_text):
|
17 |
-
if not input_audio:
|
18 |
-
return
|
19 |
-
|
20 |
-
# Load the audio file and recognize text
|
21 |
recognizer = sr.Recognizer()
|
22 |
-
with sr.AudioFile(input_audio) as source:
|
23 |
-
audio = recognizer.record(source)
|
24 |
-
audio_text = recognizer.recognize_google(audio)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
text_to_match = input_text.lower()
|
29 |
-
audio_text = audio_text.lower()
|
30 |
-
|
31 |
-
for word in audio_text.split():
|
32 |
-
if word in text_to_match:
|
33 |
-
trimmed_audio += AudioSegment.from_file(input_audio)
|
34 |
-
|
35 |
-
# Export the trimmed audio to a file
|
36 |
-
trimmed_audio.export("trimmed_audio.mp3", format="mp3")
|
37 |
-
|
38 |
-
# Display the trimmed audio
|
39 |
-
st.audio("trimmed_audio.mp3", format="audio/mp3")
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import speech_recognition as sr
|
|
|
3 |
|
4 |
+
def transcribe_audio(audio_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
recognizer = sr.Recognizer()
|
|
|
|
|
|
|
6 |
|
7 |
+
with sr.AudioFile(audio_file) as source:
|
8 |
+
audio = recognizer.record(source)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
try:
|
11 |
+
transcription = recognizer.recognize_google(audio)
|
12 |
+
return transcription
|
13 |
+
except sr.UnknownValueError:
|
14 |
+
return ""
|
15 |
+
|
16 |
+
def filter_words(input_text, transcribed_text):
|
17 |
+
transcribed_words = transcribed_text.split()
|
18 |
+
filtered_text = input_text
|
19 |
+
for word in transcribed_words:
|
20 |
+
filtered_text = filtered_text.replace(word, "")
|
21 |
+
return filtered_text
|
22 |
+
|
23 |
+
st.title("Voice Cloning Word Filter")
|
24 |
+
|
25 |
+
uploaded_audio = st.file_uploader("Upload an audio file", type=["wav", "mp3", "ogg"])
|
26 |
+
input_text = st.text_area("Enter input text")
|
27 |
+
|
28 |
+
if uploaded_audio is not None:
|
29 |
+
st.audio(uploaded_audio, format="audio/wav")
|
30 |
+
|
31 |
+
if st.button("Transcribe and Filter"):
|
32 |
+
if uploaded_audio is not None:
|
33 |
+
transcribed_text = transcribe_audio(uploaded_audio)
|
34 |
+
filtered_text = filter_words(input_text, transcribed_text)
|
35 |
+
st.subheader("Transcribed Text:")
|
36 |
+
st.write(transcribed_text)
|
37 |
+
st.subheader("Filtered Output Text:")
|
38 |
+
st.write(filtered_text)
|
39 |
+
|
40 |
+
st.write(
|
41 |
+
"Note: This is a simple demonstration of filtering words from an audio transcript. The accuracy of word filtering "
|
42 |
+
"depends on the quality of the audio and the performance of the ASR engine."
|
43 |
+
)
|