Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import streamlit as st
|
2 |
-
import noisereduce as nr
|
3 |
import soundfile as sf
|
4 |
import io
|
5 |
import numpy as np
|
|
|
|
|
6 |
from pydub import AudioSegment
|
7 |
-
from pydub.silence import split_on_silence, detect_silence
|
8 |
|
9 |
# Define a Streamlit app
|
10 |
st.title("Audio Processing App")
|
@@ -12,33 +12,52 @@ st.title("Audio Processing App")
|
|
12 |
# Upload the input audio file
|
13 |
uploaded_audio = st.file_uploader("Upload an audio file", type=["mp3", "wav", "ogg", "flac", "wma", "m4a"])
|
14 |
|
|
|
|
|
|
|
15 |
if uploaded_audio is not None:
|
16 |
audio_bytes = uploaded_audio.read()
|
17 |
|
18 |
-
# Convert audio file to numpy array
|
19 |
audio, sample_rate = sf.read(io.BytesIO(audio_bytes))
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
# Create an AudioSegment from the reduced audio data
|
26 |
-
reduced_audio = AudioSegment(
|
27 |
-
reduced_audio_data.tobytes(),
|
28 |
frame_rate=sample_rate,
|
29 |
-
sample_width=
|
30 |
channels=1
|
31 |
)
|
32 |
|
33 |
-
#
|
34 |
-
st.write("
|
35 |
-
|
36 |
-
silenced_audio = AudioSegment.empty()
|
37 |
-
for start, end in silence_segments:
|
38 |
-
silenced_audio += reduced_audio[start:end]
|
39 |
|
40 |
# Provide a link to download the processed audio
|
41 |
-
st.audio(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# Run the Streamlit app
|
44 |
if __name__ == "__main__":
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import soundfile as sf
|
3 |
import io
|
4 |
import numpy as np
|
5 |
+
import pyaudio
|
6 |
+
import wave
|
7 |
from pydub import AudioSegment
|
|
|
8 |
|
9 |
# Define a Streamlit app
|
10 |
st.title("Audio Processing App")
|
|
|
12 |
# Upload the input audio file
|
13 |
uploaded_audio = st.file_uploader("Upload an audio file", type=["mp3", "wav", "ogg", "flac", "wma", "m4a"])
|
14 |
|
15 |
+
# Speed factor input
|
16 |
+
speed_factor = st.slider("Playback Speed", min_value=0.1, max_value=2.0, step=0.1, value=1.0)
|
17 |
+
|
18 |
if uploaded_audio is not None:
|
19 |
audio_bytes = uploaded_audio.read()
|
20 |
|
21 |
+
# Convert audio file to numpy array using soundfile
|
22 |
audio, sample_rate = sf.read(io.BytesIO(audio_bytes))
|
23 |
|
24 |
+
# Create an AudioSegment from the audio data
|
25 |
+
audio_segment = AudioSegment(
|
26 |
+
audio.tobytes(),
|
|
|
|
|
|
|
|
|
27 |
frame_rate=sample_rate,
|
28 |
+
sample_width=2,
|
29 |
channels=1
|
30 |
)
|
31 |
|
32 |
+
# Slow down the audio based on user's input speed factor
|
33 |
+
st.write(f"Slowing down audio to {speed_factor}x speed...")
|
34 |
+
slowed_audio = audio_segment.speedup(playback_speed=1/speed_factor)
|
|
|
|
|
|
|
35 |
|
36 |
# Provide a link to download the processed audio
|
37 |
+
st.audio(slowed_audio.export(format="wav").read(), format="audio/wav")
|
38 |
+
|
39 |
+
# Play the modified audio
|
40 |
+
st.audio(slowed_audio.export(format="mp3").read(), format="audio/mp3")
|
41 |
+
|
42 |
+
# PyAudio code for capturing and playing audio
|
43 |
+
p = pyaudio.PyAudio()
|
44 |
+
stream_out = p.open(format=pyaudio.paInt16,
|
45 |
+
channels=1,
|
46 |
+
rate=int(sample_rate * speed_factor),
|
47 |
+
output=True)
|
48 |
+
|
49 |
+
stream_in = p.open(format=pyaudio.paInt16,
|
50 |
+
channels=1,
|
51 |
+
rate=sample_rate,
|
52 |
+
input=True)
|
53 |
+
|
54 |
+
for _ in range(1):
|
55 |
+
data = stream_in.read(int(len(slowed_audio) / sample_rate * speed_factor) * 2)
|
56 |
+
stream_out.write(data)
|
57 |
+
|
58 |
+
stream_out.stop_stream()
|
59 |
+
stream_out.close()
|
60 |
+
p.terminate()
|
61 |
|
62 |
# Run the Streamlit app
|
63 |
if __name__ == "__main__":
|